1,278 research outputs found

    Application of a multi-component mean field model to the coarsening behaviour of a nickel-based superalloy

    Get PDF
    A multi-component mean field model has been applied to predict the particle evolution of the γ′ particles in the nickel based superalloy IN738LC, capturing the transition from an initial multimodal particle distribution towards a unimodal distribution. Experiments have been performed to measure the coarsening behaviour during isothermal heat treatments using quantitative analysis of micrographs. The three dimensional size of the γ′ particles has been approximated for use in simulation. A coupled thermodynamic/mean field modelling framework is presented and applied to describe the particle size evolution. A robust numerical implementation of the model is detailed that makes use of surrogate models to capture the thermodynamics. Different descriptions of the particle growth rate of non-dilute particle systems have been explored. A numerical investigation of the influence of scatter in chemical composition upon the particle size distribution evolution has been carried out. It is shown how the tolerance in chemical composition of a given alloy can impact particle coarsening behaviour. Such predictive capability is of interest in understanding variation in component performance and the refinement of chemical composition tolerances. It has been found that the inclusion of misfit strain within the current model formulation does not have a significant affect upon predicted long term particle coarsening behaviour. Model predictions show good agreement with experimental data. In particular, the model predicts a reduced growth rate of the mean particle size during the transition from bimodal to unimodal distributions

    Motor cortex and gait in mild cognitive impairment: a magnetic resonance spectroscopy and volumetric imaging study

    Get PDF
    Gait disorders are common in the course of dementia, even at the stage of mild cognitive impairment, owing to probable changes in higher levels of motor control. Since motor control message is ultimately supported in the brain by the primary motor cortex and since cortical lesions are frequent in the dementia process, we hypothesized that impairments of the primary motor cortex may explain the early gait disorders observed in mild cognitive impairment. Our purpose was to determine whether the neurochemistry of the primary motor cortex measured with proton magnetic resonance spectroscopy, and its volume, were associated with gait performance while single and dual-tasking in mild cognitive impairment. Twenty community dwellers with mild cognitive impairment, aged 76 years (11) [median (interquartile range)] (30% female) from the \u27Gait and Brain Study\u27 were included in this analysis. Gait velocity and stride time variability were measured while single (i.e. walking alone) and dual tasking (i.e. walking while counting backwards by seven) using an electronic walkway (GAITRite System). Ratios of N-acetyl aspartate to creatine and choline to creatine and cortical volume were calculated in the primary motor cortex. Participants were categorized according to median N-acetyl aspartate to creatine and choline to creatine ratios. Age, gender, body mass index, cognition, education level and subcortical vascular burden were used as potential confounders. Participants with low N-acetyl aspartate to creatine (n = 10) had higher (worse) stride time variability while dual tasking than those with high N-acetyl aspartate to creatine (P = 0.007). Those with high choline to creatine had slower (worse) gait velocity while single (P = 0.015) and dual tasking (P = 0.002). Low N-acetyl aspartate to creatine was associated with increased stride time variability while dual tasking (adjusted beta = 5.51, P = 0.031). High choline to creatine was associated with slower gait velocity while single (adjusted beta = -26.56, P = 0.009) and dual tasking (adjusted beta = -41.92, P = 0.022). Cortical volume correlated with faster gait velocity while single (P = 0.029) and dual tasking (P = 0.037), and with decreased stride time variability while single tasking (P = 0.034). Finally, the probability of exhibiting abnormal metabolite ratios in the primary motor cortex was 63% higher among participants with major gait disturbances in dual task. Those with compromised gait velocity in dual task had a 2.05-fold greater risk of having a smaller cortical volume. In conclusion, the neurochemistry and volume of the primary motor cortex were associated with gait performance while single and dual tasking. Stride time variability was mainly sensitive to neuronal function (N-acetyl aspartate to creatine), whereas gait velocity was more affected by inflammatory damage (choline to creatine) and volumetric changes. These findings may contribute to a better understanding of the higher risks of mobility decline and falls in subjects with mild cognitive impairment

    Exact Z2Z^2 scaling of pair production in the high-energy limit of heavy-ion collisions

    Get PDF
    The two-center Dirac equation for an electron in the external electromagnetic field of two colliding heavy ions in the limit in which the ions are moving at the speed of light is exactly solved and nonperturbative amplitudes for free electron-positron pair production are obtained. We find the condition for the applicability of this solution for large but finite collision energy, and use it to explain recent experimental results. The observed scaling of positron yields as the square of the projectile and target charges is a result of an exact cancellation of a nonperturbative charge dependence and holds as well for large coupling. Other observables would be sensitive to nonperturbative phases.Comment: 4 pages, Revtex, no figures, submitted to PR

    A low-lying scalar meson nonet in a unitarized meson model

    Full text link
    A unitarized nonrelativistic meson model which is successful for the description of the heavy and light vector and pseudoscalar mesons yields, in its extension to the scalar mesons but for the same model parameters, a complete nonet below 1 GeV. In the unitarization scheme, real and virtual meson-meson decay channels are coupled to the quark-antiquark confinement channels. The flavor-dependent harmonic-oscillator confining potential itself has bound states epsilon(1.3 GeV), S(1.5 GeV), delta(1.3 GeV), kappa(1.4 GeV), similar to the results of other bound-state qqbar models. However, the full coupled-channel equations show poles at epsilon(0.5 GeV), S(0.99 GeV), delta(0.97 GeV), kappa(0.73 GeV). Not only can these pole positions be calculated in our model, but also cross sections and phase shifts in the meson-scattering channels, which are in reasonable agreement with the available data for pion-pion, eta-pion and Kaon-pion in S-wave scattering.Comment: A slightly revised version of Zeitschrift fuer Physik C30, 615 (1986

    The Strange Quark Contribution to the Proton's Magnetic Moment

    Get PDF
    We report a new determination of the strange quark contribution to the proton's magnetic form factor at a four-momentum transfer Q2 = 0.1 (GeV/c)^2 from parity-violating e-p elastic scattering. The result uses a revised analysis of data from the SAMPLE experiment which was carried out at the MIT-Bates Laboratory. The data are combined with a calculation of the proton's axial form factor GAe to determine the strange form factor GMs(Q2=0.1)=0.37 +- 0.20 +- 0.26 +- 0.07. The extrapolation of GMs to its Q2=0 limit and comparison with calculations is also discussed.Comment: 6 pages, 1 figure, submitted to Phys. Lett.

    Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions

    Get PDF
    We discuss the two-center, time-dependent Dirac equation describing the dynamics of an electron during a peripheral, relativistic heavy-ion collision at extreme energies. We derive a factored form, which is exact in the high-energy limit, for the asymptotic channel solutions of the Dirac equation, and elucidate their close connection with gauge transformations which transform the dynamics into a representation in which the interaction between the electron and a distant ion is of short range. We describe the implications of this relationship for solving the time-dependent Dirac equation for extremely relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR

    Seasonal variation of zooplankton community structure and trophic position in the Celtic Sea: a stable isotope and biovolume spectrum approach

    Get PDF
    Zooplankton on continental shelves represent an important intermediary in the transfer of energy and matter from phytoplankton to the wider ecosystem. Their taxonomic composition and trophic interactions with phytoplankton vary in space and time, and interpreting the implications of this constantly evolving landscape remains a major challenge. Here we combine plankton taxonomic data with the analysis of biovolume spectra and stable isotopes to provide insights into the trophic interactions that occur in a shelf sea ecosystem (Celtic Sea) across the spring-summer-autumn transition. Biovolume spectra captured the seasonal development of the zooplankton community well, both in terms of total biomass and trophic positioning, and matched trophic positions estimated by stable isotope analysis. In early April, large microplankton (63-200 µm) occupied higher trophic positions than mesozooplankton (>200 µm), likely reflecting the predominance of nanoplankton (2-20 µm) that were not readily available to mesozooplankton grazers. Biomass and number of trophic levels increased during the spring bloom as elevated primary production allowed for a higher abundance of predatory species. During July, the plankton assemblage occupied relatively high trophic positions, indicating important links to the microbial loop and the recycling of organic matter. The strong correlation between biomass and community trophic level across the study suggests that the Celtic Sea is a relatively enclosed and predominantly energy-limited ecosystem. The progression of the zooplankton biomass and community structure within the central shelf region was different to that at the shelf-break, potentially reflecting increased predatory control of copepods by macrozooplankton and pelagic fishes at the shelf break. We suggest that the combination of size spectra and stable isotope techniques are highly complementary and useful for interpreting the seasonal progression of trophic interactions in the plankton
    corecore