1,300 research outputs found

    The long-term effects of space weather on satellite operations

    Get PDF
    Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES) is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles.) The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment

    An Evaluation of Formate as an Electron Donor to Facilitate Palladium (PD) - Catalyzed Destruction of Chlorinated Aliphatic Hydrocarbons

    Get PDF
    Chlorinated aliphatic hydrocarbons (CAHs) such as trichloroethylene (TCE), tetrachloroethylene (PCE), and trichloroethane (TCA) are probable human carcinogens that have been used widely within the DoD, primarily as solvents for cleaning and metal degreasing. These compounds are frequently found to be groundwater contaminants. In fact, TCE and PCE are the first and third most commonly detected groundwater contaminants nationwide. The focus of this study was to determine the effectiveness of using a palladium (Pd) catalyst with formate as a reductant to treat CAH-contaminated groundwater. TCE was used as a model CAH. Other investigators have focused on hydrogen gas (H2) as a reductant to treat CAH-contaminated groundwater. However, when using H2 as a reductant, catalyst deactivation is observed due to the production of hydrochloric acid. In this study, formic acid was used as the reductant, resulting in no observed catalyst deactivation even at high contaminant concentrations. Reaction rates achieved when using 100% H2 as a reductant could be matched by using 4 mM (184 mg/L) formic acid. At increased formic acid concentrations, system performance exceeded performance achievable when using H2. It is also noted that while hydrogen is an explosive, low solubility gas, formic acid can easily and safely be added to contaminated water. The aforementioned work has shown that this method for treating CAH-contaminated groundwater by using formic acid and a Pd-catalyst is more efficient, safe, and less costly than using hydrogen gas as a reductant

    A maximum spreading speed for magnetopause reconnection

    Get PDF
    Past observations and numerical modeling find magnetic reconnection to initiate at a localized region and then spread along a current sheet. The rate of spreading has been proposed to be controlled by a number of mechanisms based on the properties within the boundary. At the Earth's magnetopause the spreading speed is also limited by the speed at which a shocked solar wind front can move along the magnetopause boundary. The speed at which a purely north to south rotational discontinuity propagates through the magnetosheath and contacts the magnetopause is measured here using the Block‐Adaptive‐Tree Solar Wind Roe‐Type Upwind Scheme global magnetohydrodynamics model. The propagation speed along the magnetopause is fastest near the nose of the magnetopause and decreases with distance from the subsolar point. The average propagation speed along the dayside magnetopause is 847 km/s. This is significantly larger than observed rates of reconnection spreading at the magnetopause of 30–40 km/s indicating that, for the observed conditions, the speed of front propagation along the magnetopause does not limit or control the spreading rate of reconnection.Published versio

    Deep Scale-spaces: Equivariance Over Scale

    Get PDF

    Outflow in global magnetohydrodynamics as a function of a passive inner boundary source

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106972/1/jgra50946.pd

    Panel Discussion - Management of Eurasian watermilfoil in the United States using native insects: State regulatory and management issues

    Get PDF
    While researchers have evaluated the potential of native insect herbivores to manage nonindigenous aquatic plant species such as Eurasian watermilfoil ( Myriophyllum spicatum L.), the practical matters of regulatory compliance and implementation have been neglected. A panel of aquatic nuisance species program managers from three state natural resource management agencies (Minnesota, Vermont and Washington) discussed their regulatory and policy concerns. In addition, one ecological consultant attempting to market one of the native insects to manage Eurasian watermilfoil added his perspective on the special challenges of distributing a native biological control agent for management of Eurasian watermilfoil

    The 2+1 Kepler Problem and Its Quantization

    Get PDF
    We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.Comment: 59 pages, LaTeX2e, 9 eps figure

    Broad Absorption Line Variability in Radio-Loud Quasars

    Full text link
    We investigate C IV broad absorption line (BAL) variability within a sample of 46 radio-loud quasars (RLQs), selected from SDSS/FIRST data to include both core-dominated (39) and lobe-dominated (7) objects. The sample consists primarily of high-ionization BAL quasars, and a substantial fraction have large BAL velocities or equivalent widths; their radio luminosities and radio-loudness values span ~2.5 orders of magnitude. We have obtained 34 new Hobby-Eberly Telescope (HET) spectra of 28 BAL RLQs to compare to earlier SDSS data, and we also incorporate archival coverage (primarily dual-epoch SDSS) for a total set of 78 pairs of equivalent width measurements for 46 BAL RLQs, probing rest-frame timescales of ~80-6000 d (median 500 d). In general, only modest changes in the depths of segments of absorption troughs are observed, akin to those seen in prior studies of BAL RQQs. Also similar to previous findings for RQQs, the RLQs studied here are more likely to display BAL variability on longer rest-frame timescales. However, typical values of |Delta_EW| and |Delta_EW|/ are about 40+/-20% lower for BAL RLQs when compared with those of a timescale-matched sample of BAL RQQs. Optical continuum variability is of similar amplitude in BAL RLQs and BAL RQQs; for both RLQs and RQQs, continuum variability tends to be stronger on longer timescales. BAL variability in RLQs does not obviously depend upon their radio luminosities or radio-loudness values, but we do find tentative evidence for greater fractional BAL variability within lobe-dominated RLQs. Enhanced BAL variability within more edge-on (lobe-dominated) RLQs supports some geometrical dependence to the outflow structure.Comment: 27 pages, 16 figures, 6 tables, accepted to MNRAS, full Appendix A at http://www.macalester.edu/~bmille13/balrlqs.htm

    The ionospheric source of magnetospheric plasma is not a black box input for global models

    Full text link
    Including ionospheric outflow in global magnetohydrodynamic models of near‐Earth outer space has become an important step toward understanding the role of this plasma source in the magnetosphere. Of the existing approaches, however, few tie the outflowing particle fluxes to magnetospheric conditions in a self‐consistent manner. Doing so opens the magnetosphere‐ionosphere system to nonlinear mass‐energy feedback loops, profoundly changing the behavior of the magnetosphere‐ionosphere system. Based on these new results, it is time for the community eschew treating ionospheric outflow as a simple black box source of magnetospheric plasma.Key PointsIonospheric outflow plays a critical role in the magnetosphereThe magnetosphere affects outflowModelers must account for this two‐way relationshipPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133592/1/jgra52677_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133592/2/jgra52677.pd

    Validation of SWMF magnetic field and plasma

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94788/1/swe345.pd
    • 

    corecore