423 research outputs found
The hyperfine Paschen-Back Faraday effect
We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine PaschenâBack regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10â4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87Rb is found to be ~40 kHz °Câ1
Estimating genomic breeding values and detecting QTL using univariate and bivariate models
Background Genomic selection is particularly beneficial for difficult or expensive to measure traits. Since multi-trait selection is an important tool to deal with such cases, an important question is what the added value is of multi-trait genomic selection. Methods The simulated dataset, including a quantitative and binary trait, was analyzed with four univariate and bivariate linear models to predict breeding values for juvenile animals. Two models estimated variance components with REML using a numerator (A), or SNP based relationship matrix (G). Two SNP based Bayesian models included one (BayesA) or two distributions (BayesC) for estimated SNP effects. The bivariate BayesC model sampled QTL probabilities for each SNP conditional on both traits. Genotypes were permuted 2,000 times against phenotypes and pedigree, to obtain significance thresholds for posterior QTL probabilities. Genotypes were permuted rather than phenotypes, to retain relationships between pedigree and phenotypes, such that polygenic effects could still be estimated. Results Correlations between estimated breeding values (EBV) of different SNP based models, for juvenile animals, were greater than 0.93 (0.87) for the quantitative (binary) trait. Estimated genetic correlation was 0.71 (0.66) for model G (A). Accuracies of breeding values of SNP based models were for both traits highest for BayesC and lowest for G. Accuracies of breeding values of bivariate models were up to 0.08 higher than for univariate models. The bivariate BayesC model detected 14 out of 32 QTL for the quantitative trait, and 8 out of 22 for the binary trait. Conclusions Accuracy of EBV clearly improved for both traits using bivariate compared to univariate models. BayesC achieved highest accuracies of EBV and was also one of the methods that found most QTL. Permuting genotypes against phenotypes and pedigree in BayesC provided an effective way to derive significance thresholds for posterior QTL probabilitie
Observation of an Exotic Baryon in Exclusive Photoproduction from the Deuteron
In an exclusive measurement of the reaction , a
narrow peak that can be attributed to an exotic baryon with strangeness
is seen in the invariant mass spectrum. The peak is at
GeV/c with a measured width of 0.021 GeV/c FWHM, which is largely
determined by experimental mass resolution. The statistical significance of the
peak is . The mass and width of the observed peak are
consistent with recent reports of a narrow baryon by other experimental
groups.Comment: 5 pages, 5 figure
Measurement of Beam-Spin Asymmetries for Deep Inelastic Electroproduction
We report the first evidence for a non-zero beam-spin azimuthal asymmetry in
the electroproduction of positive pions in the deep-inelastic region. Data have
been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector
at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of
the modulation increases with the momentum of the pion relative to
the virtual photon, , with an average amplitude of for range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured in the resonance region at and 0.65
GeV. Data for the reaction were taken at Jefferson Lab
with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally
polarized electrons at an energy of 1.515 GeV. For the first time a complete
angular distribution was measured, permitting the separation of different
non-resonant amplitudes using a partial wave analysis. Comparison with previous
beam asymmetry measurements at MAMI indicate a deviation from the predicted
dependence of using recent phenomenological
models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid
Communications. Version 2 has revised Q^2 analysi
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12
Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using
2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12
targets in the CLAS detector. A_LT' is related to the imaginary part of the
longitudinal-transverse interference and in quasifree nucleon knockout it
provides an unambiguous signature for final state interactions (FSI).
Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3%
for data with good statistical precision. Optical Model in Eikonal
Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation
(RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure
Onset of asymptotic scaling in deuteron photodisintegration
We investigate the transition from the nucleon-meson to quark-gluon
description of the strong interaction using the photon energy dependence of the
differential cross section for photon energies above 0.5 GeV and
center-of-mass proton angles between and . A possible
signature for this transition is the onset of cross section scaling
with the total energy squared, , at some proton transverse momentum, .
The results show that the scaling has been reached for proton transverse
momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime
is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction
The first measurements of the transferred polarization for the exclusive ep
--> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson
National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron
beam was used to measure the hyperon polarization over a range of Q2 from 0.3
to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass
angular range of the K+ meson. Comparison with predictions of hadrodynamic
models indicates strong sensitivity to the underlying resonance contributions.
A non-relativistic quark model interpretation of our data suggests that the
s-sbar quark pair is produced with spins predominantly anti-aligned.
Implications for the validity of the widely used 3P0 quark-pair creation
operator are discussed.Comment: 6 pages, 4 figure
Observation of Nuclear Scaling in the Reaction at 1
The ratios of inclusive electron scattering cross sections of He,
C, and Fe to He have been measured for the first time. It is
shown that these ratios are independent of at Q1.4 (GeV/c) for
1.5 where the inclusive cross section depends primarily on the
high-momentum components of the nuclear wave function. The observed scaling
shows that the momentum distributions at high-momenta have the same shape for
all nuclei and differ only by a scale factor. The observed onset of the scaling
at Q1.4 and 1.5 is consistent with the kinematical expectation that
two nucleon short range correlations (SRC) are dominate the nuclear wave
function at 300 MeV/c. The values of these ratios in the scaling
region can be related to the relative probabilities of SRC in nuclei with
A3. Our data demonstrate that for nuclei with A12 these
probabilities are 5-5.5 times larger than in deuterium, while for He it is
larger by a factor of about 3.5.Comment: 11 pages, 10 figure
- âŠ