47 research outputs found

    Asymmetry of balance responses to monaural galvanic vestibular stimulation in subjects with vestibular schwannoma

    Get PDF
    OBJECTIVE: We investigated the potential of galvanic vestibular stimulation (GVS) to quantify lateralised asymmetry of the vestibulospinal pathways by measuring balance responses to monaural GVS in 10 subjects with vestibular schwannoma and 22 healthy control subjects. METHODS: Subjects standing without vision were stimulated with 3s, 1mA direct current stimuli delivered monaurally. The mean magnitude and direction of the evoked balance responses in the horizontal plane were measured from ground-reaction forces and from displacement and velocity of the trunk. Vestibular-evoked myogenic potentials (VEMPs) to 500Hz air and bone-conducted tones were also recorded. RESULTS: In healthy subjects, the magnitudes of the force, velocity and displacement responses were not significantly different for left compared to right ear stimulation. Their individual asymmetry ratios were always <30%. Subjects with vestibular schwannoma had significantly smaller force, velocity and displacement responses to stimulation of the affected compared with non-affected ear. Their mean asymmetry ratios were significantly elevated for all three measures (41.2±10.3%, 40.3±15.1% and 21.9±14.6%). CONCLUSIONS: Asymmetry ratios of balance responses to monaural GVS provide a quantitative and clinically applicable lateralising test of the vestibulospinal pathways. SIGNIFICANCE: This method offers a more clinically relevant measure of standing balance than existing vestibular function tests which assess only vestibuloocular and vestibulocollic pathways

    Direction-dependent excitatory and inhibitory ocular vestibular-evoked myogenic potentials (oVEMPs) produced by oppositely directed accelerations along the midsagittal axis of the head

    Get PDF
    Oppositely directed displacements of the head need oppositely directed vestibulo-ocular reflexes (VOR), i.e. compensatory responses. Ocular vestibular-evoked myogenic potentials (oVEMPs) mainly reflect the synchronous extraocular muscle activity involved in the process of generating the VOR. The oVEMPs recorded beneath the eyes when looking up represent electro-myographic responses mainly of the inferior oblique muscle. We aimed: (1) to study the properties of these responses as they were produced by head acceleration impulses to the forehead and to the back of the head; (2) to investigate the relationships between these responses and the 3-D linear head accelerations that might reflect the true stimulus that acts on the vestibular hair cells. We produced backward- and forward-directed acceleration stimuli in four conditions (positive and negative head acceleration impulses to the hairline and to the inion) in 16 normal subjects. The oVEMPs produced by backward- and forward-directed accelerations of the head showed consistent differences. They were opposite in the phase. The responses produced by backward accelerations of the head began with an initial negativity, n11; conversely, those produced by accelerations directed forward showed initially a positive response, p11. There was a high inter-subject correlation of head accelerations along the head anteroposterior and transverse axes, but almost no correlation of accelerations along the vertical axis of the head. We concluded that backward-directed head accelerations produced an initial excitatory response, and forward-directed accelerations of the head were accompanied by an initial inhibitory response. These responses showed dependence on acceleration direction in the horizontal plane of the head. This could be consistent with activation of the utricle

    Asymmetric vestibular evoked myogenic potentials in unilateral Menière patients

    Get PDF
    Vestibular evoked myogenic potentials (VEMPs) were measured in 22 unilateral Menière patients with monaural and binaural stimulation with 250 and 500 Hz tone bursts. For all measurement situations significantly lower VEMP amplitudes were on average measured at the affected side compared to the unaffected side. Unilateral Menière patients have, in contrast to normal subjects, asymmetric VEMPs, indicating a permanently affected vestibular (most likely otolith) system at the side of hearing loss. The diagnostic value of VEMP amplitude asymmetry measurement in individual patients is low, because of the large overlap of the VEMP amplitude asymmetry range for unilateral Menière patients with that for normal subjects

    Vestibular evoked myogenic potential: recording methods in humans and guinea pigs

    Get PDF
    O potencial miogênico evocado vestibular (VEMP) é um teste clínico que avalia a função vestibular através de um reflexo vestíbulo-cervical inibitório captado nos músculos do corpo em resposta à estimulação acústica de alta intensidade. OBJETIVO: Verificar e analisar os diversos métodos de registro dos potenciais miogênicos evocados vestibulares no homem e em cobaias. MATERIAL E MÉTODO: Realizou-se busca eletrônica nas bases de dados MEDLINE, LILACS, SCIELO e COCHRANE. RESULTADOS: Foram verificadas divergências quanto às formas de registro dos potenciais miogênicos evocados vestibulares, relacionadas com os seguintes fatores: posição do paciente no momento do registro, tipo de estímulo sonoro utilizado (clicks ou tone bursts), parâmetros para a promediação dos estímulos (intensidade, freqüência, tempo de apresentação, filtros, ganho de amplificação das respostas e janelas para captação dos estímulos), tipo de fone utilizado e forma de apresentação dos estímulos (monoaural ou binaural, ipsi ou contralateral). CONCLUSÃO: Não existe consenso na literatura quanto ao melhor método de registro dos potenciais evocados miogênicos vestibulares, havendo necessidade de pesquisas mais específicas para comparação entre estes registros e a definição de um modelo padrão para a utilização na prática clínica

    Vestibular evoked myogenic potentials in practice: Methods, pitfalls and clinical applications

    Full text link
    Vestibular evoked myogenic potentials (VEMPs) are a useful and increasingly popular component of the neuro-otology test battery. These otolith-dependent reflexes are produced by stimulating the ears with air-conducted sound or skull vibration and recorded from surface electrodes placed over the neck (cervical VEMPs) and eye muscles (ocular VEMPs). VEMP abnormalities have been reported in various diseases of the ear and vestibular system, and VEMPs have a clear role in the diagnosis of superior semicircular canal dehiscence. However there is significant variability in the methods used to stimulate the otoliths and record the reflexes. This review discusses VEMP methodology and provides a detailed theoretical background for the techniques that are typically used. The review also outlines the common pitfalls in VEMP recording and the clinical applications of VEMPs

    Vestibular migraine presenting with acute peripheral vestibulopathy: Clinical, oculographic and vestibular test profiles

    Full text link
    To describe clinical, oculographic and vestibular test profiles in patients with vestibular migraine (VM) who presented with acute peripheral vestibulopathy. VM was diagnosed according to Bárány Society or Neuhauser criteria. Neuro-otological examination, video-head impulse tests (v-HIT), cervical and ocular vestibular-evoked myogenic potentials (cVEMP/oVEMP), subjective visual horizontal (SVH) and audiometry were undertaken. Ten patients presented with prolonged vertigo. All had primary position unidirectional horizontal spontaneous nystagmus (mean slow-phase velocity 9.6 ± 7.0°). Horizontal canal vestibulo-ocular reflex was reduced in all (mean gain 0.54 ± 0.2) with refixation saccades (cumulative amplitude 6.4 ± 3.2°). Abnormality rates for cVEMP, oVEMP and SVH were 30%, 80%, 78%, respectively. Magnetic resonance imaging brain was normal in all patients. Patients were followed up over 6 months to 8 years with no change in the final diagnosis. VM can rarely present as an acute peripheral vestibulopathy with findings that mimic vestibular neuritis and should be considered in the differential diagnosis of acute prolonged vertigo
    corecore