179 research outputs found
The Pornography Report: Epistemology, Methodology and Ideology
In a summary section of The Report of the Commission on Obscenity and Pornography, my colleagues and I wrote that . . . persons who are unfamiliar with erotic materials may experience strong and conflicting emotional reactions when first exposed to sexual stimuli. Multiple responses, such as attraction and repulsion to an unfamiliar object, are commonly observed in the research literature on psychosensory stimulation from a variety of nonsexual as well as sexual stimuli. \u27 It may be ironic (but not unpredictable) that the Report we were writing would subsequently generate similarly strong and conflicting emotional responses, for the same reasons: it is so unfamiliar. As I review available evidence concerning the impact of the Report, I detect strength, emotion, repulsion and attraction. And, as in the area of human sexuality, there is considerable misunderstanding
Exact Effective Action for (1+1 Dimensional) Fermions in an Abelian Background at Finite Temperature
In an effort to further understand the structure of effective actions for
fermions in an external gauge background at finite temperature, we study the
example of 1+1 dimensional fermions interacting with an arbitrary Abelian gauge
field. We evaluate the effective action exactly at finite temperature. This
effective action is non-analytic as is expected at finite temperature. However,
contrary to the structure at zero temperature and contrary to naive
expectations, the effective action at finite temperature has interactions to
all (even) orders (which, however, do not lead to any quantum corrections). The
covariant structure thus obtained may prove useful in studying 2+1 dimensional
models in arbitrary backgrounds. We also comment briefly on the solubility of
various 1+1 dimensional models at finite temperature.Comment: A few clarifying remarks added;21 page
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
A BRiTE Journey: 2013–2019
Resilience is widely acknowledged as important for teacher success, yet how to assist pre-service teachers build the skills and strategies for professional resilience is a question often asked by teacher educators. This chapter overviews the design, development and features of a series of five online learning modules designed to support pre-service teacher resilience. The BRiTE modules were informed by an analysis of the literature and content created to address the key themes. Five modules were developed: Building resilience, Relationships, Wellbeing, Taking initiative and Emotions. Each module was designed to be interactive and personalised, enabling users to build their personal toolkit to support their resilience. Since their launch in 2015, the modules have been widely used by pre-service teachers, teachers and a range of stakeholders with over 14,000 registered users at the beginning of 2020. Potential for future use in supporting teacher resilience is discussed
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
Recommended from our members
Long-Term Time-Dependent Probabilities for the Third Uniform California Earthquake Rupture Forecast (UCERF3)
The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-independent model published previously, renewal models are utilized to represent elastic-rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for unsegmented models. The new methodology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30 yr M ≥ 6.7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault-slip rates), with relaxation of segmentation and inclusion of multifault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M 6.7 size events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative importance of logic-tree branches, vary throughout the region and depend on the evaluation metric of interest. For example, M ≥ 6.7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the approximate nature of the model and known limitations, means the applicability of UCERF3 should be evaluated on a case-by-case basis
Phase transitions in quantum chromodynamics
The current understanding of finite temperature phase transitions in QCD is
reviewed. A critical discussion of refined phase transition criteria in
numerical lattice simulations and of analytical tools going beyond the
mean-field level in effective continuum models for QCD is presented.
Theoretical predictions about the order of the transitions are compared with
possible experimental manifestations in heavy-ion collisions. Various places in
phenomenological descriptions are pointed out, where more reliable data for
QCD's equation of state would help in selecting the most realistic scenario
among those proposed. Unanswered questions are raised about the relevance of
calculations which assume thermodynamic equilibrium. Promising new approaches
to implement nonequilibrium aspects in the thermodynamics of heavy-ion
collisions are described.Comment: 156 pages, RevTex. Tables II,VIII,IX and Fig.s 1-38 are not included
as postscript files. I would like to ask the requestors to copy the missing
tables and figures from the corresponding journal-referenc
- …