103 research outputs found

    Socioeconomic drivers of illegal bushmeat hunting in a Southern African Savanna

    Get PDF
    Illegal bushmeat hunting of economically and ecologically valuable wildlife populations is emerging as a threat across African savannas. Due to the cryptic nature of illegal hunting, little information exists on the drivers of the bushmeat industry. Here we report on the socioeconomic drivers identified in a broader investigation into illegal bushmeat hunting in rural villages around a southern African savanna ecosystem, the Okavango Delta, Botswana. We conducted interviews with bushmeat hunters and heads of rural households about hunting activities, rural livelihoods, attitudes towards wildlife, and market characteristics of illegal bushmeat. Using generalized linear models, we identified and investigated a set of independent variables that characterize illegal-hunter households. Results revealed that compared to non-hunter households, illegal hunter households (n = 119, 25% of the sample) lived in closer proximity to wildlife, were more likely to farm crops, and more often received income from formal employment by at least one household member. Bushmeat hunting was positively correlated with livestock wealth but not associated with household income. Only 11.4% (n = 44) of non-hunter households reported purchasing bushmeat. Most households (84%) reported incurring costs associated with living near wildlife (e.g., damages to crops or livestock), with no difference between hunter and non-hunter households. Hunters were more likely to say they valued wildlife. We conclude that bushmeat hunting in Botswana is generally supplemental to household core income sources rather than essential for subsistence. We propose two interventions to counter the negative impacts of illegal hunting on the region's lucrative wildlife-based economy: 1) more effective law enforcement that imposes costs for hunting illegally, and 2) development of alternative wildlife-based revenue streams that motivate communities to conserve wildlife.The Food and Agriculture Organization of the United Nations provided the majority of funding for this research under Technical Cooperation Programme project TCP/BOT/3501. The study was also supported by Panthera and the Botswana Predator Conservation Trust. JRBM was supported in part by National Science Foundation Coupled Human and Natural Systems Grant 115057.http://www.elsevier.com/locate/biocon2019-10-01hj2018Zoology and Entomolog

    Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage

    Get PDF
    Batrachochytriumdendrobatidis (Bd) is a globally ubiquitous fungal infection that has emerged to become a primary driver of amphibian biodiversity loss. Despite widespread effort to understand the emergence of this panzootic, the origins of the infection, its patterns of global spread, and principle mode of evolution remain largely unknown. Using comparative population genomics, we discovered three deeply diverged lineages of Bd associated with amphibians. Two of these lineages were found in multiple continents and are associated with known introductions by the amphibian trade.We found that isolates belonging to one clade, the global panzootic lineage (BdGPL) have emerged across at least five continents during the 20th century and are associated with the onset of epizootics in North America, Central America, the Caribbean, Australia, and Europe. The two newly identified divergent lineages, Cape lineage (BdCAPE) and Swiss lineage (BdCH), were found to differ in morphological traits when compared against one another and BdGPL, and we show that BdGPL is hypervirulent. BdGPL uniquely bears the hallmarks of genomic recombination, manifested as extensive intergenomic phylogenetic conflict and patchily distributed heterozygosity. Wepostulate that contact between previously genetically isolated allopatric populations of Bd may have allowed recombination to occur, resulting in the generation, spread, and invasion of the hypervirulent BdGPL leading to contemporary disease-driven losses in amphibian biodiversity.Peer Reviewe

    Response to comment on 'Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity'

    Get PDF
    Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species

    Heterodinuclear ruthenium(II)-cobalt(III) complexes as models for a new approach to selective cancer treatment

    Get PDF
    Heterodinuclear ruthenium(ii)-cobalt(iii) complexes have been prepared as part of investigations into a new approach to selective cancer treatment. A cobalt(iii) centre bearing amine ligands, which serve as models for cytotoxic nitrogen mustard ligands, is connected by a bridging ligand to a ruthenium(ii)-polypyridyl moiety. Upon excitation of the ruthenium centre by visible light, electron transfer to the cobalt(iii) centre results in reduction to cobalt(ii) and consequent release of its ligands. We have synthesised several such structures and demonstrated their ability to release ligands upon excitation of the ruthenium centre by visible light

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientific Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer reviewedPublisher PD
    • 

    corecore