133 research outputs found

    Success and Failure in Doctrinal Innovation A Comparison of the U.S. Army Medical Department and Logistics Branch, 1990 2010

    Get PDF
    In the latter half of this decade, the U.S. Army has been engaged in persistent asymmetric warfare. During this period, army organizations have varied in the degree to which they have innovated doctrinally and technologically to confront this new reality. At the broadest level, the army has innovated considerably. However, at the combat brigade level, we observe variation across medical and logistics units, critical for providing support for combat operations. This thesis explains this variation. Several authors propose that units learn and innovate primarily during wartime or peacetime, and they do so from either a top-down or bottom-up methodology. Yet, such methods of learning do not adequately explain variations between respective levels of innovation in which logistics forces within combat brigades have seemingly adapted more rapidly than their medical counterparts. This thesis suggests that another factor, organizational complexity, explains why the brigade support medical company has not adapted as rapidly as its logistics counterparts within the support battalion (BSB) structure.http://archive.org/details/successndfailure109456886Outstanding ThesisMajor, United States ArmyApproved for public release; distribution is unlimited

    Rapid Enzyme-linked Immunosorbent Assay for Detection of the Algal Toxin Domoic Acid

    Get PDF
    Domoic acid (DA) is a potent toxin produced by bloom-forming phytoplankton in the genus Pseudo-nitzschia, which is responsible for causing amnesic shellfish poisoning (ASP) in humans. ASP symptoms include vomiting, diarrhea, and in more severe cases confusion, loss of memory, disorientation, and even coma or death. This paper describes the development and validation of a rapid, sensitive, enzyme linked immunosorbent assay test kit for detecting DA using a monoclonal antibody. The assay gives equivalent results to those obtained using standard high performance liquid chromatography, fluorenylmethoxycarbonyl high performance liquid chromatography, or liquid chromatography—mass spectrometry methods. It has a linear range from 0.1–3 ppb and was used successfully to measure DA in razor clams, mussels, scallops, and phytoplankton. The assay requires approximately 1.5 h to complete and has a standard 96-well format where each strip of eight wells is removable and can be stored at 4°C until needed. The first two wells of each strip serve as an internal control eliminating the need to run a standard curve. This allows as few as 3 or as many as 36 duplicate samples to be run at a time enabling real-time sample processing and limiting degradation of DA, which can occur during storage. There was minimal cross-reactivity in this assay with glutamine, glutamic acid, kainic acid, epi- or iso-DA. This accurate, rapid, cost-effective, assay offers environmental managers and public health officials an effective tool for monitoring DA concentrations in environment samples

    Health Risk Assessment for Cyanobacterial Toxins in Seafood

    Get PDF
    Cyanobacteria (blue-green algae) are abundant in fresh, brackish and marine waters worldwide. When toxins produced by cyanobacteria are present in the aquatic environment, seafood harvested from these waters may present a health hazard to consumers. Toxicity hazards from seafood have been internationally recognised when the source is from marine algae (dinoflagellates and diatoms), but to date few risk assessments for cyanobacterial toxins in seafood have been presented. This paper estimates risk from seafood contaminated by cyanobacterial toxins, and provides guidelines for safe human consumption

    Profile of blood cells and inflammatory mediators in periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to profile levels of blood cells and serum cytokines during afebrile and febrile phases of periodic fever, aphthous <b>s</b>tomatitis, pharyngitis and adenitis (PFAPA) syndrome to advance pathophysiological understanding of this pediatric disease.</p> <p>Methods</p> <p>A cohort of patients with a median age of 4.9 years experiencing 'typical PFAPA' episodes participated in this study. Blood cells and serum cytokines were analyzed by CBC analysis and multiplex ELISA.</p> <p>Results</p> <p>Oscillations in the concentration of blood cells during the afebrile and febrile phases of typical PFAPA syndrome were observed; novel findings include increased monocytes and decreased eosinophils during a febrile episode and increased thrombocytes in the afebrile interval. Relatively modest levels of pro-inflammatory cytokines were present in sera. IFNγ-induced cytokine IP10/CXCL10 was increased after the onset of fever while T cell-associated cytokines IL7 and IL17 were suppressed during afebrile and febrile periods.</p> <p>Conclusions</p> <p>Identification of dysregulated blood cells and serum cytokines is an initial step towards the identification of biomarkers of PFAPA disease and/or players in disease pathogenesis. Future investigations are required to conclusively discern which mediators are associated specifically with PFAPA syndrome.</p

    Neurological Disease Rises from Ocean to Bring Model for Human Epilepsy to Life

    Get PDF
    Domoic acid of macroalgal origin was used for traditional and medicinal purposes in Japan and largely forgotten until its rediscovery in diatoms that poisoned 107 people after consumption of contaminated mussels. The more severely poisoned victims had seizures and/or amnesia and four died; however, one survivor unexpectedly developed temporal lobe epilepsy (TLE) a year after the event. Nearly a decade later, several thousand sea lions have stranded on California beaches with neurological symptoms. Analysis of the animals stranded over an eight year period indicated five clusters of acute neurological poisoning; however, nearly a quarter have stranded individually outside these events with clinical signs of a chronic neurological syndrome similar to TLE. These poisonings are not limited to sea lions, which serve as readily observed sentinels for other marine animals that strand during domoic acid poisoning events, including several species of dolphin and whales. Acute domoic acid poisoning is five-times more prominent in adult female sea lions as a result of the proximity of their year-round breeding grounds to major domoic acid bloom events. The chronic neurological syndrome, on the other hand, is more prevalent in young animals, with many potentially poisoned in utero. The sea lion rookeries of the Channel Islands are at the crossroads of domoic acid producing harmful algal blooms and a huge industrial discharge site for dichlorodiphenyltrichloroethane (DDTs). Studies in experimental animals suggest that chronic poisoning observed in immature sea lions may result from a spatial and temporal coincidence of DDTs and domoic acid during early life stages. Emergence of an epilepsy syndrome from the ocean brings a human epilepsy model to life and provides unexpected insights into interaction with legacy contaminants and expression of disease at different life stages

    Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Harmful Algae 14 (2012): 271-300, doi:10.1016/j.hal.2011.10.025.Over the last decade, our understanding of the environmental controls on Pseudo-nitzschia blooms and domoic acid (DA) production has matured. Pseudo-nitzschia have been found along most of the world's coastlines, while the impacts of its toxin, DA, are most persistent and detrimental in upwelling systems. However, Pseudo-nitzschia and DA have recently been detected in the open ocean's high-nitrate, low-chlorophyll regions, in addition to fjords, gulfs and bays, showing their presence in diverse environments. The toxin has been measured in zooplankton, shellfish, crustaceans, echinoderms, worms, marine mammals and birds, as well as in sediments, demonstrating its stable transfer through the marine food web and abiotically to the benthos. The linkage of DA production to nitrogenous nutrient physiology, trace metal acquisition, and even salinity, suggests that the control of toxin production is complex and likely influenced by a suite of environmental factors that may be unique to a particular region. Advances in our knowledge of Pseudo-nitzschia sexual reproduction, also in field populations, illustrate its importance in bloom dynamics and toxicity. The combination of careful taxonomy and powerful new molecular methods now allow for the complete characterization of Pseudo-nitzschia populations and how they respond to environmental changes. Here we summarize research that represents our increased knowledge over the last decade of Pseudo-nitzschia and its production of DA, including changes in worldwide range, phylogeny, physiology, ecology, monitoring and public health impacts

    ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in Cystic Fibrosis.

    Get PDF
    Cystic Fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective CFTR-mediated chloride and bicarbonate transport, with dysregulation of epithelial sodium channels (ENaC). These changes alter fluid and electrolyte homeostasis and result in an exaggerated proinflammatory response driven, in part, by infection. We tested the hypothesis that NLRP3 inflammasome activation and ENaC upregulation drives exaggerated innate-immune responses in this multisystem disease. We identify an enhanced proinflammatory signature, as evidenced by increased levels of IL-18, IL-1β, caspase-1 activity and ASC-speck release in monocytes, epithelia and serum with CF-associated mutations; these differences were reversed by pretreatment with NLRP3 inflammasome inhibitors and notably, inhibition of amiloride-sensitive sodium (Na+) channels. Overexpression of β-ENaC, in the absence of CFTR dysfunction, increased NLRP3-mediated inflammation, indicating that dysregulated, ENaC-dependent signalling may drive exaggerated inflammatory responses in CF. These data support a role for sodium in modulating NLRP3 inflammasome activation
    corecore