64 research outputs found

    Derivation of Rhesus Monkey Parthenogenetic Embryonic Stem Cells and Its MicroRNA Signature

    Get PDF
    Parthenogenetic embryonic stem cells are considered as a promising resource for regeneration medicine and powerful tools for developmental biology. A lot of studies have revealed that embryonic stem cells have distinct microRNA expression pattern and these microRNAs play important roles in self-renewal and pluripotency of embryonic stem cells. However, few studies concern about microRNA expression pattern in parthenogenetic embryonic stem cells, especially in non-human primate—the ideal model species for human, largely due to the limited rhesus monkey parthenogenetic embryonic stem cells (rpESCs) available and lack of systematic analysis of the basics of rpESCs. Here, we derived two novel rpESCs lines and characterized their microRNA signature by Solexa deep sequencing. These two novel rpESCs shared many properties with other primate ESCs, including expression of pluripotent markers, capacity to generate derivatives representative of all three germ layers in vivo and in vitro, maintaining of euploid karyotype even after long culture. Additionally, lack of some paternally expressed imprinted genes and identity of Single-nucleotide Polymorphism (SNP) compare to their oocyte donors support their parthenogenesis origin. By characterizing their microRNA signature, we identified 91 novel microRNAs, except those are also detected in other primate ESCs. Moreover, these two novel rpESCs display a unique microRNA signature, comparing to their biparental counterpart ESCs. Then we analyzed X chromosome status in these two novel rpESCs; results suggested that one of them possesses two active X chromosomes, the other possesses only one active X chromosome liking biparental female embryonic stem cells. Taken together, our novel rpESCs provide a new alternative to existing rhesus monkey embryonic stem cells, microRNA information expands rhesus monkey microRNA data and may help understanding microRNA roles in pluripotency and parthenogenesis

    Changes of Circulating Transforming Growth Factor-²1 Level During Radiation Therapy Are Correlated with the Prognosis of Locally Advanced Non-small Cell Lung Cancer

    Get PDF
    IntroductionWe hypothesized that plasma transforming growth factor-²1 (TGF-²1) level and its dynamic change are correlated with the prognosis of locally advanced non-small cell lung cancer (NSCLC) treated with radiation therapy (RT).MethodsPatients with stage IIIA or IIIB NSCLC treated with RT with or without chemotherapy were eligible for this study. Platelet poor plasma was collected from each patient within 1 week before RT (pre-RT) and at the 4th week during RT (during-RT). TGF-²1 level was measured with enzyme-linked immunosorbent assay. The primary end point was overall survival (OS) and the secondary end point was progression-free survival (PFS). Kaplan-Meier and Cox regression were used for risk factor evaluation.ResultsA total of 65 patients were eligible for the study. The median OS and PFS were 17.7 and 13.7 months, respectively. In univariate analysis, performance status, weight loss, radiation dose, and TGF-²1 ratio (during-RT/pre-RT TGF-²1 level) were all significantly correlated with OS. In the multivariate analysis, performance status, radiation dose, and TGF-²1 ratio were still significantly correlated with OS. The median OS was 30.7 months for patients with TGF-²1 ratio ≤1 versus 13.3 months for those with TGF-²1 ratio more than 1 (p = 0.0029); and the median PFS was 16.8 months versus 7.2 months, respectively (p = 0.010).ConclusionsIn locally advanced NSCLC, the decrease of TGF-²1 level during RT is correlated with favorable prognosis

    Gene Delivery to Nonhuman Primate Preimplantation Embryos Using Recombinant Adeno-Associated Virus

    Get PDF
    Delivery of genome editing tools to mammalian zygotes has revolutionized animal modeling. However, the mechanical delivery method to introduce genes and proteins to zygotes remains a challenge for some animal species that are important in biomedical research. Here, an approach to achieve gene delivery and genome editing in nonhuman primate embryos is presented by infecting zygotes with recombinant adeno-associated viruses (rAAVs). Together with previous reports from the authors of this paper and others, this approach is potentially applicable to a broad range of mammals. In addition to genome editing and animal modeling, this rAAV-based method can facilitate gene function studies in early-stage embryos

    Histopathological Features and Composition of Gut Microbiota in Rhesus Monkey of Alcoholic Liver Disease

    Get PDF
    Alcohol-induced chronic liver disease (ALD) is becoming the most common liver disease in the world. However, there are no effective, universally accepted therapies for ALD. The etiology of ALD remains blurry so far. Historical evidence has demonstrated a link between the liver and gut microbiota. But it is difficult to distinguish the effect of gut microbiota changes caused by alcohol consumption in humans since the microbiota change detected in humans is complicated by diet and environmental factors. Due to the genetic, physiological, metabolic, and behavioral similarities to humans, the rhesus monkey provides excellent translational validity in preclinical studies, and the diet and environmental conditions can be controlled well in rhesus monkey. In our study, we explored the relationship between ALD and the gut microbiome in the rhesus monkeys with alcoholic liver steatosis. Our results showed that there was a change of the bacterial community structure in monkeys with ALD. Differences of the relative abundances of gut microbiota at phylum, order, family, genus, and species levels were observed between control monkeys and monkeys with ALD, and different pathways enriched in the monkeys with ALD were identified by metagenomic function analysis. Firmicutes, Proteobacteria, Verrucomicrobia tended to increase whereas Bacteroidetes and Actinobacteria decreased in the fecal microbiota of ALD group compared to the control group. Lactobacillales and Lactobacillus significantly decreased in ALD monkeys compared with normal monkeys, Streptococcus was lower in the ALD group compared with the control group. The non-human primate model of ALD will be useful for exploration of the microbiome markers as diagnosis and potentially prognosis for ALD. The ALD model will benefit the development of new therapeutic procedures for treating ALD and provide safety and efficacy evaluation for clinical application

    Modeling Rett Syndrome Using TALEN-Edited MECP2 Mutant Cynomolgus Monkeys

    Get PDF
    Gene-editing technologies have made it feasible to create nonhuman primate models for human genetic disorders. Here, we report detailed genotypes and phenotypes of TALEN-edited MECP2 mutant cynomolgus monkeys serving as a model for a neurodevelopmental disorder, Rett syndrome (RTT), which is caused by loss-of-function mutations in the human MECP2 gene. Male mutant monkeys were embryonic lethal, reiterating that RTT is a disease of females. Through a battery of behavioral analyses, including primate-unique eye-tracking tests, in combination with brain imaging via MRI, we found a series of physiological, behavioral, and structural abnormalities resembling clinical manifestations of RTT. Moreover, blood transcriptome profiling revealed that mutant monkeys resembled RTT patients in immune gene dysregulation. Taken together, the stark similarity in phenotype and/or endophenotype between monkeys and patients suggested that gene-edited RTT founder monkeys would be of value for disease mechanistic studies as well as development of potential therapeutic interventions for RTT

    MicroRNA profiling of rhesus macaque embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play important roles in embryonic stem cell (ESC) self-renewal and pluripotency. Numerous studies have revealed human and mouse ESC miRNA profiles. As a model for human-related study, the rhesus macaque is ideal for delineating the regulatory mechanisms of miRNAs in ESCs. However, studies on rhesus macaque (r)ESCs are lacking due to limited rESC availability and a need for systematic analyses of fundamental rESC characteristics.</p> <p>Results</p> <p>We established three rESC lines and profiled microRNA using Solexa sequencing resulting in 304 known and 66 novel miRNAs. MiRNA profiles were highly conserved between rESC lines and predicted target genes were significantly enriched in differentiation pathways. Further analysis of the miRNA-target network indicated that gene expression regulated by miRNAs was negatively correlated to their evolutionary rate in rESCs. Moreover, a cross-species comparison revealed an overall conservation of miRNA expression patterns between human, mouse and rhesus macaque ESCs. However, we identified three miRNA clusters (miR-467, the miRNA cluster in the imprinted Dlk1-Dio3 region and C19MC) that showed clear interspecies differences.</p> <p>Conclusions</p> <p>rESCs share a unique miRNA set that may play critical roles in self-renewal and pluripotency. MiRNA expression patterns are generally conserved between species. However, species and/or lineage specific miRNA regulation changed during evolution.</p

    Generation of Trophoblast Stem Cells from Rabbit Embryonic Stem Cells with BMP4

    Get PDF
    Trophoblast stem (TS) cells are ideal models to investigate trophectoderm differentiation and placental development. Herein, we describe the derivation of rabbit trophoblast stem cells from embryonic stem (ES) cells. Rabbit ES cells generated in our laboratory were induced to differentiate in the presence of BMP4 and TS-like cell colonies were isolated and expanded. These cells expressed the molecular markers of mouse TS cells, were able to invade, give rise to derivatives of TS cells, and chimerize placental tissues when injected into blastocysts. The rabbit TS-like cells maintained self-renewal in culture medium with serum but without growth factors or feeder cells, whilst their proliferation and identity were compromised by inhibitors of FGFs and TGF-β receptors. Taken together, our study demonstrated the derivation of rabbit TS cells and suggested the essential roles of FGF and TGF-β signalings in maintenance of rabbit TS cell self-renewal

    The power of synthetic biology for bioproduction, remediation and pollution control

    Get PDF
    The agenda of the UN's Sustainable Development Goals (SDGs) 1 challenges the synthetic biology community—and the life sciences as a whole—to develop transformative technologies that help to protect, even expand our planet's habitability. While modern tools for genome editing already benefit applications in health and agriculture, sustainability also asks for a dramatic transformation of our use of natural resources. The challenge is not just to limit and, wherever possible revert emissions of pollutants and greenhouse gases, but also to replace environmentally costly processes based on fossil fuels with bio‐based sustainable alternatives. This task is not exclusively a scientific and technical one but will also require guidelines and regulations for the development and large‐scale deployment of this new type of bio‐based production. Some recent advances that can (or soon could) enable us to make progress in these areas—and several possible governance principles—need to be addressed

    miRNA Signature in Mouse Spermatogonial Stem Cells Revealed by High-Throughput Sequencing

    No full text
    Spermatogonial stem cells (SSCs) play fundamental roles in spermatogenesis. Although a handful of genes have been discovered as key regulators of SSC self-renewal and differentiation, the regulatory network responsible for SSC function remains unclear. In particular, small RNA signatures during mouse spermatogenesis are not yet systematically investigated. Here, using next generation sequencing, we compared small RNA signatures of in vitro expanded SSCs, testis-derived somatic cells (Sertoli cells), developing germ cells, mouse embryonic stem cells (ESCs), and mouse mesenchymal stem cells among mouse embryonic stem cells (ESCs) to address small RNA transition during mouse spermatogenesis. The results manifest that small RNA transition during mouse spermatogenesis displays overall declined expression profiles of miRNAs and endo-siRNAs, in parallel with elevated expression profiles of piRNAs, resulting in the normal biogenesis of sperms. Meanwhile, several novel miRNAs were preferentially expressed in mouse SSCs, and further investigation of their functional annotation will allow insights into the mechanisms involved in the regulation of SSC activities. We also demonstrated the similarity of miRNA signatures between SSCs and ESCs, thereby providing a new clue to understanding the molecular basis underlying the easy conversion of SSCs to ESCs
    corecore