13 research outputs found

    Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    Full text link
    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. Here we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In TIs, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional HLN formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In WSM thin films having intermediate to large values of the quasiparticle mass extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. We discuss implications for experiments and provide a brief comparison with transition metal dichalcogenides.Comment: arXiv admin note: text overlap with arXiv:1705.0761

    Theory of radio-frequency spectroscopy of impurities in quantum gases

    Full text link
    We present a theory of radio-frequency spectroscopy of impurities interacting with a quantum gas at finite temperature. By working in the canonical ensemble of a single impurity, we show that the impurity spectral response is directly connected to the finite-temperature equation of state (free energy) of the impurity. We consider two different response protocols: "injection", where the impurity is introduced into the medium from an initially non-interacting state; and "ejection", where the impurity is ejected from an initially interacting state with the medium. We show that there is a simple mapping between injection and ejection spectra, which is connected to the detailed balance condition in thermal equilibrium. To illustrate the power of our approach, we specialize to the case of the Fermi polaron, corresponding to an impurity atom that is immersed in a non-interacting Fermi gas. For a mobile impurity with a mass equal to the fermion mass, we employ a finite-temperature variational approach to obtain the impurity spectral response. We find a striking non-monotonic dependence on temperature in the impurity free energy, the contact, and the radio-frequency spectra. For the case of an infinitely heavy Fermi polaron, we derive exact results for the finite-temperature free energy, thus generalizing Fumi's theorem to arbitrary temperature. We also determine the exact dynamics of the contact after a quench of the impurity-fermion interactions. Finally, we show that the injection and ejection spectra obtained from the variational approach compare well with the exact spectra, thus demonstrating the accuracy of our approximate method.Comment: 15 pages, 10 figure

    Radio-frequency response and contact of impurities in a quantum gas

    Full text link
    We investigate the radio-frequency spectroscopy of impurities interacting with a quantum gas at finite temperature. In the limit of a single impurity, we show using Fermi's golden rule that introducing (or injecting) an impurity into the medium is equivalent to ejecting an impurity that is initially interacting with the medium, since the "injection" and "ejection" spectral responses are simply related to each other by an exponential function of frequency. Thus, the full spectral information for the quantum impurity is contained in the injection spectral response, which can be determined using a range of theoretical methods, including variational approaches. We use this property to compute the finite-temperature equation of state and Tan contact of the Fermi polaron. Our results for the contact of a mobile impurity are in excellent agreement with recent experiments and we find that the finite-temperature behavior is qualitatively different compared to the case of infinite impurity mass.Comment: 4 pages, 2 figure

    Anomalous Hall Coulomb drag of massive Dirac fermions

    No full text
    corecore