162 research outputs found

    API recommendation for event-driven Android application development

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    MIMN-DPP: Maximum-information and minimum-noise determinantal point processes for unsupervised hyperspectral band selection

    Get PDF
    Band selection plays an important role in hyperspectral imaging for reducing the data and improving the efficiency of data acquisition and analysis whilst significantly lowering the cost of the imaging system. Without the category labels, it is challenging to select an effective and low-redundancy band subset. In this paper, a new unsupervised band selection algorithm is proposed based on a new band search criterion and an improved Determinantal Point Processes (DPP). First, to preserve the original information of hyperspectral image, a novel band search criterion is designed for searching the bands with high information entropy and low noise. Unfortunately, finding the optimal solution based on the search criteria to select a low-redundancy band subset is a NP-hard problem. To solve this problem, we consider the correlation of bands from both original hyperspectral image and its spatial information to construct a double-graph model to describe the relationship between spectral bands. Besides, an improved DPP algorithm is proposed for the approximate search of a low-redundancy band subset from the double-graph model. Experiment results on several well-known datasets show that the proposed optical band selection algorithm achieves better performance than many other state-of-the-art methods

    On the topological surface states of the intrinsic magnetic topological insulator Mn-Bi-Te family

    Full text link
    We review recent progress in the electronic structure study of intrinsic magnetic topological insulators (MnBi2_2Te4_4)(Bi2_2Te3_3)n_n (n=0,1,2,3n=0,1,2,3) family. Specifically, we focus on the ubiquitously (nearly) gapless behavior of the topological surface state Dirac cone observed by photoemission spectroscopy, even though a large Dirac gap is expected because of surface ferromagnetic order. The dichotomy between experiment and theory concerning this gap behavior is perhaps the most critical and puzzling question in this frontier. We discuss various proposals accounting for the lack of magnetic effect on the topological surface state Dirac cone, which are mainly categorized into two pictures, magnetic reconfiguration, and topological surface state redistribution. Band engineering towards opening a magnetic gap of topological surface states provides great opportunities to realize quantized topological transport and axion electrodynamics at higher temperatures
    corecore