4,266 research outputs found

    A new exact closest lattice point search algorithm using linear constraints

    Get PDF
    The problem of finding the closest lattice point arises in several communications scenarios and is known to be NP-hard. We propose a new closest lattice point search algorithm which utilizes a set of new linear inequality constraints to reduce the search of the closest lattice point to the intersection of a polyhedron and a sphere. This set of linear constraints efficiently leverage the geometric structure of the lattice to reduce considerably the number of points that must be visited. Simulation results verify that this algorithm offers substantial computational savings over standard sphere decoding when the dimension of the problem is large

    Further Results on Performance Analysis for Compressive Sensing Using Expander Graphs

    Get PDF
    Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. In this paper, we will give further results on the performance bounds of compressive sensing. We consider the newly proposed expander graph based compressive sensing schemes and show that, similar to the l_1 minimization case, we can exactly recover any k-sparse signal using only O(k log(n)) measurements, where k is the number of nonzero elements. The number of computational iterations is of order O(k log(n)), while each iteration involves very simple computational steps

    Compressed Sensing over the Grassmann Manifold: A Unified Analytical Framework

    Get PDF
    It is well known that compressed sensing problems reduce to finding the sparse solutions for large under-determined systems of equations. Although finding the sparse solutions in general may be computationally difficult, starting with the seminal work of [2], it has been shown that linear programming techniques, obtained from an l_(1)-norm relaxation of the original non-convex problem, can provably find the unknown vector in certain instances. In particular, using a certain restricted isometry property, [2] shows that for measurement matrices chosen from a random Gaussian ensemble, l_1 optimization can find the correct solution with overwhelming probability even when the support size of the unknown vector is proportional to its dimension. The paper [1] uses results on neighborly polytopes from [6] to give a ldquosharprdquo bound on what this proportionality should be in the Gaussian measurement ensemble. In this paper we shall focus on finding sharp bounds on the recovery of ldquoapproximately sparserdquo signals (also possibly under noisy measurements). While the restricted isometry property can be used to study the recovery of approximately sparse signals (and also in the presence of noisy measurements), the obtained bounds can be quite loose. On the other hand, the neighborly polytopes technique which yields sharp bounds for ideally sparse signals cannot be generalized to approximately sparse signals. In this paper, starting from a necessary and sufficient condition for achieving a certain signal recovery accuracy, using high-dimensional geometry, we give a unified null-space Grassmannian angle-based analytical framework for compressive sensing. This new framework gives sharp quantitative tradeoffs between the signal sparsity and the recovery accuracy of the l_1 optimization for approximately sparse signals. As it will turn out, the neighborly polytopes result of [1] for ideally sparse signals can be viewed as a special case of ours. Our result concerns fundamental properties of linear subspaces and so may be of independent mathematical interest
    corecore