102 research outputs found
Distributed Opportunistic Scheduling For Ad-Hoc Communications Under Noisy Channel Estimation
Distributed opportunistic scheduling is studied for wireless ad-hoc networks,
where many links contend for one channel using random access. In such networks,
distributed opportunistic scheduling (DOS) involves a process of joint channel
probing and distributed scheduling. It has been shown that under perfect
channel estimation, the optimal DOS for maximizing the network throughput is a
pure threshold policy. In this paper, this formalism is generalized to explore
DOS under noisy channel estimation, where the transmission rate needs to be
backed off from the estimated rate to reduce the outage. It is shown that the
optimal scheduling policy remains to be threshold-based, and that the rate
threshold turns out to be a function of the variance of the estimation error
and be a functional of the backoff rate function. Since the optimal backoff
rate is intractable, a suboptimal linear backoff scheme that backs off the
estimated signal-to-noise ratio (SNR) and hence the rate is proposed. The
corresponding optimal backoff ratio and rate threshold can be obtained via an
iterative algorithm. Finally, simulation results are provided to illustrate the
tradeoff caused by increasing training time to improve channel estimation at
the cost of probing efficiency.Comment: Proceedings of the 2008 IEEE International Conference on
Communications, Beijing, May 19-23, 200
Distributed Opportunistic Scheduling for MIMO Ad-Hoc Networks
Distributed opportunistic scheduling (DOS) protocols are proposed for
multiple-input multiple-output (MIMO) ad-hoc networks with contention-based
medium access. The proposed scheduling protocols distinguish themselves from
other existing works by their explicit design for system throughput improvement
through exploiting spatial multiplexing and diversity in a {\em distributed}
manner. As a result, multiple links can be scheduled to simultaneously transmit
over the spatial channels formed by transmit/receiver antennas. Taking into
account the tradeoff between feedback requirements and system throughput, we
propose and compare protocols with different levels of feedback information.
Furthermore, in contrast to the conventional random access protocols that
ignore the physical channel conditions of contending links, the proposed
protocols implement a pure threshold policy derived from optimal stopping
theory, i.e. only links with threshold-exceeding channel conditions are allowed
for data transmission. Simulation results confirm that the proposed protocols
can achieve impressive throughput performance by exploiting spatial
multiplexing and diversity.Comment: Proceedings of the 2008 IEEE International Conference on
Communications, Beijing, May 19-23, 200
Research on Noise Reduction of Variable Speed Rotary Compressor with Large Capacity
With the increasing speed and capacity of variable-speed rotary compressors, the problem of noise especially low and medium frequency noise in the air conditioning system which can\u27t be solved by wrapping soundproof cotton has became more serious. In this paper, based on the noise problem of the rotor compressor with a working capacity of more than 80CC, the main frequency and the position of the noise source within 1000Hz are confirmed by simulation and experiment. Then on the base of this,the muffler and accumulator are respectively optimized and improved combining with Computer Aided Engineering (CAE) means. The final application results show that the optimized scheme can reduce noise by 6.1dB in 160Hz and 8.9dB in the frequency range of 500Hz to 800Hz, achieving good results
Case report: Multidisciplinary collaboration in diagnosis and treatment of child gaucher disease
Gaucher disease (GD) is an inherited lysosomal storage disease caused by mutations in the glucocerebrosidase gene. The decrease of glucocerebrosidase activity in lysosomes results in the accumulation of its substrate glucocerebroside in the lysosomes of macrophages in organs such as the liver, spleen, bones, lungs, brain and eyes, and the formation of typical storage cells, namely “Gaucher cells”, leading to lesions in the affected tissues and organs. Hepatosplenomegaly, bone pain, cytopenia, neurological symptoms, and other systemic manifestations are common in clinical practice. Most pediatric patients have severe symptoms. Early diagnosis and treatment are crucial to improve the curative effect and prognosis. However, due to the low incidence of this disease, multi-system involvement in patients, and diverse clinical manifestations, multidisciplinary teamwork is needed for comprehensive evaluation, diagnosis and treatment. In this study, we reported 2 cases of different types of GD who were diagnosed, treated and followed up by multidisciplinary collaboration in infancy
Efficient Commitment to Functional CD34+ Progenitor Cells from Human Bone Marrow Mesenchymal Stem-Cell-Derived Induced Pluripotent Stem Cells
The efficient commitment of a specialized cell type from induced pluripotent stem cells (iPSCs) without contamination from unknown substances is crucial to their use in clinical applications. Here, we propose that CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential, could be efficiently obtained from iPSCs derived from human bone marrow mesenchymal stem cells (hBMMSC-iPSCs) with defined factors. By treatment with a cocktail containing mesodermal, hematopoietic, and endothelial inducers (BMP4, SCF, and VEGF, respectively) for 5 days, hBMMSC-iPSCs expressed the mesodermal transcription factors Brachyury and GATA-2 at higher levels than untreated groups (P<0.05). After culturing with another hematopoietic and endothelial inducer cocktail, including SCF, Flt3L, VEGF and IL-3, for an additional 7–9 days, CD34+ progenitor cells, which were undetectable in the initial iPSC cultures, reached nearly 20% of the total culture. This was greater than the relative number of progenitor cells produced from human-skin-fibroblast-derived iPSCs (hFib-iPSCs) or from the spontaneous differentiation groups (P<0.05), as assessed by flow cytometry analysis. These induced cells expressed hematopoietic transcription factors TAL-1 and SCL. They developed into various hematopoietic colonies when exposed to semisolid media with hematopoietic cytokines such as EPO and G-CSF. Hematopoietic cell lineages were identified by phenotype analysis with Wright-Giemsa staining. The endothelial potential of the cells was also verified by the confirmation of the formation of vascular tube-like structures and the expression of endothelial-specific markers CD31 and VE-CADHERIN. Efficient induction of CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential with defined factors, provides an opportunity to obtain patient-specific cells for iPSC therapy and a useful model for the study of the mechanisms of hematopoiesis and drug screening
Efficacy of PBTZ169 and pretomanid against Mycobacterium avium, Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum in BALB/c mice models
ObjectivesWe aimed to evaluate the activity of PBTZ169 and pretomanid against non-tuberculous mycobacteriosis (NTM) in vitro and in vivo.MethodsThe minimum inhibitory concentrations (MICs) of 11 antibiotics, against slow-growing mycobacteria (SGMs) and rapid-growing mycobacteria (RGMs) were tested using the microplate alamarBlue assay. The in vivo activities of bedaquiline, clofazimine, moxifloxacin, rifabutin, PBTZ169 and pretomanid against four common NTMs were assessed in murine models.ResultsPBTZ169 and pretomanid had MICs of >32 ÎĽg/mL against most NTM reference and clinical strains. However, PBTZ169 was bactericidal against Mycobacterium abscessus (3.33 and 1.49 log10 CFU reductions in the lungs and spleen, respectively) and Mycobacterium chelonae (2.29 and 2.24 CFU reductions in the lungs and spleen, respectively) in mice, and bacteriostatic against Mycobacterium avium and Mycobacterium fortuitum. Pretomanid dramatically decreased the CFU counts of M. abscessus (3.12 and 2.30 log10 CFU reductions in the lungs and spleen, respectively), whereas it showed moderate inhibition of M. chelonae and M. fortuitum. Bedaquiline, clofazimine, and moxifloxacin showed good activities against four NTMs in vitro and in vivo. Rifabutin did not inhibit M. avium and M. abscessus in mice.ConclusionPBTZ169 appears to be a candidate for treating four common NTM infections. Pretomanid was more active against M. abscessus, M. chelonae and M. fortuitum than against M. avium
Electronically phase separated nano-network in antiferromagnetic insulating LaMnO3/PrMnO3/CaMnO3 tricolor superlattice
Strongly correlated materials often exhibit an electronic phase separation
(EPS) phenomena whose domain pattern is random in nature. The ability to
control the spatial arrangement of the electronic phases at microscopic scales
is highly desirable for tailoring their macroscopic properties and/or designing
novel electronic devices. Here we report the formation of EPS nanoscale network
in a mono-atomically stacked LaMnO3/CaMnO3/PrMnO3 superlattice grown on SrTiO3
(STO) (001) substrate, which is known to have an antiferromagnetic (AFM)
insulating ground state. The EPS nano-network is a consequence of an internal
strain relaxation triggered by the structural domain formation of the
underlying STO substrate at low temperatures. The same nanoscale network
pattern can be reproduced upon temperature cycling allowing us to employ
different local imaging techniques to directly compare the magnetic and
transport state of a single EPS domain. Our results confirm the one-to-one
correspondence between ferromagnetic (AFM) to metallic (insulating) state in
manganite. It also represents a significant step in a paradigm shift from
passively characterizing EPS in strongly correlated systems to actively
engaging in its manipulation
Factors affecting the transmission of dengue fever in Haikou city in 2019
In this study, due to multiple cases of dengue fever in two locations in Haikou, Hainan, several factors affecting the transmission of dengue fever in Haikou in 2019 were analyzed. It was found that dengue fever spread from two sites: a construction site, which was an epidemic site in Haikou, and the university, where only four confirmed cases were reported. Comparative analysis revealed that the important factors affecting the spread of dengue fever in Haikou were environmental hygiene status, knowledge popularization of dengue fever, educational background, medical insurance coverage and free treatment policy knowledge and active response by the government
Evaluation of a computer-aided diagnostic model for corneal diseases by analyzing in vivo confocal microscopy images
ObjectiveIn order to automatically and rapidly recognize the layers of corneal images using in vivo confocal microscopy (IVCM) and classify them into normal and abnormal images, a computer-aided diagnostic model was developed and tested based on deep learning to reduce physicians’ workload.MethodsA total of 19,612 corneal images were retrospectively collected from 423 patients who underwent IVCM between January 2021 and August 2022 from Renmin Hospital of Wuhan University (Wuhan, China) and Zhongnan Hospital of Wuhan University (Wuhan, China). Images were then reviewed and categorized by three corneal specialists before training and testing the models, including the layer recognition model (epithelium, bowman’s membrane, stroma, and endothelium) and diagnostic model, to identify the layers of corneal images and distinguish normal images from abnormal images. Totally, 580 database-independent IVCM images were used in a human-machine competition to assess the speed and accuracy of image recognition by 4 ophthalmologists and artificial intelligence (AI). To evaluate the efficacy of the model, 8 trainees were employed to recognize these 580 images both with and without model assistance, and the results of the two evaluations were analyzed to explore the effects of model assistance.ResultsThe accuracy of the model reached 0.914, 0.957, 0.967, and 0.950 for the recognition of 4 layers of epithelium, bowman’s membrane, stroma, and endothelium in the internal test dataset, respectively, and it was 0.961, 0.932, 0.945, and 0.959 for the recognition of normal/abnormal images at each layer, respectively. In the external test dataset, the accuracy of the recognition of corneal layers was 0.960, 0.965, 0.966, and 0.964, respectively, and the accuracy of normal/abnormal image recognition was 0.983, 0.972, 0.940, and 0.982, respectively. In the human-machine competition, the model achieved an accuracy of 0.929, which was similar to that of specialists and higher than that of senior physicians, and the recognition speed was 237 times faster than that of specialists. With model assistance, the accuracy of trainees increased from 0.712 to 0.886.ConclusionA computer-aided diagnostic model was developed for IVCM images based on deep learning, which rapidly recognized the layers of corneal images and classified them as normal and abnormal. This model can increase the efficacy of clinical diagnosis and assist physicians in training and learning for clinical purposes
- …