50 research outputs found

    Transparency and Control in Platforms for Networked Markets

    Get PDF
    In this work, we analyze the worst case efficiency loss of online platform designs under a networked Cournot competition model. Inspired by some of the largest platforms today, the platform designs considered tradeoffs between transparency and control, namely, (i) open access, (ii) controlled allocation and (iii) discriminatory access. Our results show that open access designs incentivize increased production towards perfectly competitive levels and limit efficiency loss, while controlled allocation designs lead to producer-platform incentive misalignment, resulting in low participation and unbounded efficiency loss. We also show that discriminatory access designs seek a balance between transparency and control, and achieve the best of both worlds, maintaining high participation rates while limiting efficiency loss. We also study a model of consumer search cost which further distinguishes between the three designs

    Transparency and Control in Platforms for Networked Markets

    Get PDF
    In this work, we analyze the worst case efficiency loss of online platform designs under a networked Cournot competition model. Inspired by some of the largest platforms today, the platform designs considered tradeoffs between transparency and control, namely, (i) open access, (ii) controlled allocation and (iii) discriminatory access. Our results show that open access designs incentivize increased production towards perfectly competitive levels and limit efficiency loss, while controlled allocation designs lead to producer-platform incentive misalignment, resulting in low participation and unbounded efficiency loss. We also show that discriminatory access designs seek a balance between transparency and control, and achieve the best of both worlds, maintaining high participation rates while limiting efficiency loss. We also study a model of consumer search cost which further distinguishes between the three designs

    Sequencing and Genomic Diversity Analysis of IncHI5 Plasmids

    Get PDF
    IncHI plasmids could be divided into five different subgroups IncHI1ā€“5. In this study, the complete nucleotide sequences of seven blaIMP- or blaVIM-carrying IncHI5 plasmids from Klebsiella pneumoniae, K. quasipneumoniae, and K. variicola were determined and compared in detail with all the other four available sequenced IncHI5 plasmids. These plasmids carried conserved IncHI5 backbones composed of repHI5B and a repFIB-like gene (replication), parABC (partition), and tra1 (conjugal transfer). Integration of a number of accessory modules, through horizontal gene transfer, at various sites of IncHI5 backbones resulted in various deletions of surrounding backbone regions and thus considerable diversification of IncHI5 backbones. Among the accessory modules were three kinds of resistance accessory modules, namely Tn10 and two antibiotic resistance islands designated ARI-A and ARI-B. These two islands, inserted at two different fixed sites (one island was at one site and the other was at a different site) of IncHI5 backbones, were derived from the prototype Tn3-family transposons Tn1696 and Tn6535, respectively, and could be further discriminated as various intact transposons and transposon-like structures. The ARI-A or ARI-B islands from different IncHI5 plasmids carried distinct profiles of antimicrobial resistance markers and associated mobile elements, and complex events of transposition and homologous recombination accounted for assembly of these islands. The carbapenemase genes blaIMP-4, blaIMP-38 and blaVIM-1 were identified within various class 1 integrons from ARI-A or ARI-B of the seven plasmids sequenced in this study. Data presented here would provide a deeper insight into diversification and evolution history of IncHI5 plasmids

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore