123 research outputs found

    Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images

    Get PDF
    Alzheimer’s disease (AD) is an irreversible brain degenerative disorder affecting people aged older than 65 years. Currently, there is no effective cure for AD, but its progression can be delayed with some treatments. Accurate and early diagnosis of AD is vital for the patient care and development of future treatment. Fluorodeoxyglucose positrons emission tomography (FDG-PET) is a functional molecular imaging modality, which proves to be powerful to help understand the anatomical and neural changes of brain related to AD. Most existing methods extract the handcrafted features from images, and then design a classifier to distinguish AD from other groups. These methods highly depends on the preprocessing of brain images, including image rigid registration and segmentation. Motivated by the success of deep learning in image classification, this paper proposes a new classification framework based on combination of 2D convolutional neural networks (CNN) and recurrent neural networks (RNNs), which learns the intra-slice and inter-slice features for classification after decomposition of the 3D PET image into a sequence of 2D slices. The 2D CNNs are built to capture the features of image slices while the gated recurrent unit (GRU) of RNN is cascaded to learn and integrate the inter-slice features for image classification. No rigid registration and segmentation are required for PET images. Our method is evaluated on the baseline FDG-PET images acquired from 339 subjects including 93 AD patients, 146 mild cognitive impairments (MCI) and 100 normal controls (NC) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an area under receiver operating characteristic curve (AUC) of 95.3% for AD vs. NC classification and 83.9% for MCI vs. NC classification, demonstrating the promising classification performance

    Dealing With Heterogeneous 3D MR Knee Images: A Federated Few-Shot Learning Method With Dual Knowledge Distillation

    Full text link
    Federated Learning has gained popularity among medical institutions since it enables collaborative training between clients (e.g., hospitals) without aggregating data. However, due to the high cost associated with creating annotations, especially for large 3D image datasets, clinical institutions do not have enough supervised data for training locally. Thus, the performance of the collaborative model is subpar under limited supervision. On the other hand, large institutions have the resources to compile data repositories with high-resolution images and labels. Therefore, individual clients can utilize the knowledge acquired in the public data repositories to mitigate the shortage of private annotated images. In this paper, we propose a federated few-shot learning method with dual knowledge distillation. This method allows joint training with limited annotations across clients without jeopardizing privacy. The supervised learning of the proposed method extracts features from limited labeled data in each client, while the unsupervised data is used to distill both feature and response-based knowledge from a national data repository to further improve the accuracy of the collaborative model and reduce the communication cost. Extensive evaluations are conducted on 3D magnetic resonance knee images from a private clinical dataset. Our proposed method shows superior performance and less training time than other semi-supervised federated learning methods. Codes and additional visualization results are available at https://github.com/hexiaoxiao-cs/fedml-knee

    Qingpeng Ointment Ameliorates Inflammatory Responses and Dysregulation of Itch-Related Molecules for Its Antipruritic Effects in Experimental Allergic Contact Dermatitis

    Get PDF
    The pathogenesis of itchy skin diseases including allergic contact dermatitis (ACD) is complicated and the treatment of chronic itch is a worldwide problem. One traditional Tibetan medicine, Qingpeng ointment (QP), has been used in treatment of ACD in China for years. In this study we used HPLC and LC/MS analysis, combined with a BATMAN-TCM platform, for detailed HPLC fingerprint analysis and network pharmacology of QP, and investigated the anti-inflammatory and antipruritic activities of QP on ACD induced by squaric acid dibutylester (SADBE) in mice. The BATMAN-TCM analysis provided information of effector molecules of the main ingredients of QP, and possible chronic dermatitis-associated molecules and cell signaling pathways by QP. In ACD mice, QP treatment suppressed the scratching behavior induced by SADBE in a dose-dependent manner and inhibited the production of Th1/2 cytokines in serum and spleen. Also, QP treatment reversed the upregulation of mRNAs levels of itch-related genes in the skin (TRPV4, TSLP, GRP, and MrgprA3) and DRGs (TRPV1, TRPA1, GRP, and MrgprA3). Furthermore, QP suppressed the phosphorylation of Erk and p38 in the skin. In all, our work indicated that QP can significantly attenuate the pathological alterations of Th1/2 cytokines and itch-related mediators, and inhibit the phosphorylation of MAPKs to treat the chronic itch

    Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma

    Full text link
    We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate (C9_{9}H16_{16}O8_{8}) foam of 2 mg/cm3^{-3} density, and 11-mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. The plasma parameters were diagnosed to be Te_{e}=17 eV and ne_{e}=4 ×\times 1020^{20} cm3^{-3}. The average charge states passing through the plasma were observed to be higher than those predicted by the commonly-used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. In previsous measurement with partially ionized plasma from gas discharge and z-pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we were able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-Glass laser radiation. The finding is important for heavy ion beam driven high energy density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference

    Latent Fingerprint Segmentation Based on Ridge Density and Orientation Consistency

    No full text
    Latent fingerprints are captured from the fingerprint impressions left unintentionally at the surfaces of the crime scene. They are often used as an important evidence to identify criminals in law enforcement agencies. Different from the widely used plain and rolled fingerprints, the latent fingerprints are usually of poor quality consisting of complex background with a lot of nonfingerprint patterns and various noises. Latent fingerprint segmentation is an important image processing step to separate fingerprint foreground from background for more accurate and efficient feature extraction and matching. Traditional methods are usually based on the local features such as gray scale variance and gradients, which are sensitive to noise and cannot work well for latent images. This paper proposes a latent fingerprint segmentation method based on combination of ridge density and orientation consistency, which are global and local features of fingerprints, respectively. First, a texture image is obtained by decomposition of latent image with a total variation model. Second, we propose to detect the ridge segments from the texture image, and then compute the density of ridge segments and ridge orientation consistency to characterize the global and local fingerprint patterns. Finally, fingerprint segmentation is performed by combining the ridge density and orientation consistency for latent images. The proposed method has been evaluated on NIST SD27 latent fingerprint database. Experimental results and comparison demonstrate the promising performance of the proposed method

    Late Palaeogene palynoflora from Point Hennequin of the Admiralty Bay, King George Island, Antarctica with reference to its stratigraphical significance

    Get PDF
    The present paper is to discuss the geological age and sedimentary environment based mainly on the characteristics of the palynological assemblage in the intercalated tuffaceous sand-mudstones of the Upper Point Hennequin Group in the Admirelty Bay, King George Island, Antarctica. More than 40 species, mainly the Late Paleogene plant community in Gondwana and belonging to Weddellian biographic Province, were encountered within the volcano-sedimentary rocks of the Upper Point Hennequin Group. The index member is the genus Nothofagidites. The occurrence of N. cf. saraensis and N. cf. flemingii and the absence of Proteacidites spp. indicates that the sporopollen-bearing rocks is of Oligocene age, which were deposited in a limnetic zone near medium-lower mountains environment with warm and humid climate

    Spatial Matching Analysis and Development Strategies of County Night-Time Economy: A Case of Anning County, Yunnan Province

    No full text
    The Chinese government regards the night-time economy as one of the essential means to expand domestic demand and enhance sustainable economic development. Scientifically choosing the night-time economic development path of the suburban counties of the Chinese metropolis (SCCM) and proposing a reasonable spatial matching planning strategy is an urgent problem for Chinese local governments. This study takes Anning county, a suburban Kunming metropolitan area, as the research area. Using Python to capture multi-spatial data, such as POI and Baidu heatmap, we use ArcGIS spatial analysis and statistical tools to show the spatial distribution characteristics of the night-time economic formats in Anning County. At the same time, the spatial coupling coordination model is used to calculate the coupling coordination degree of the night-time economic formats distribution and comprehensive traffic distribution (D1), night-time economic formats distribution and night-crowd vitality (D2), and the spatial coupling coordination of the three (D3). It is divided into five spatial matching levels and analyzes the shortage of night-time economic development in each subdistrict. The research results show that the spatial development of the night-time economy in Anning county is unbalanced at the current stage. The northern part of the county has a good development trend, and the Lianran subdistrict has the highest coupling coordination degree (0.995). In contrast, the southern part of the county has the lowest coupling coordination degree due to a lack of economic formats and traffic restrictions (0.115). According to the subdistricts’ differences, the sustainable development strategy of the county’s night-time economy should be formulated from the perspective of the long-term development of metropolitan areas. We hope that this research can provide valuable inspiration and a development reference for relevant countries and regions to stimulate the sustainable power of the night-time economy
    corecore