196 research outputs found

    TGMCF: a tree-guided multi-modality correlation filter for visual tracking.

    Get PDF
    For updating the tracking models, most existing approaches have an assumption that the target changes smoothly over time. Despite their success in some cases, these approaches struggle in dealing with occlusion, illumination changes and abrupt motion which may break the temporal smoothness assumption. To tackle this problem, in this paper we propose a tree-guided visual tracking model based on the multimodality correlation filter which could estimate the target state according to the most reliable information in previous frames. We maintain a representative target state set in a tree model over the whole tracking process. Ideally, the tree model is able to capture all the landmark states of the target, and provides a confident template for the correlation filter. Therefore, we propose an optimal updating strategy to record the most recent stable and representative states for tree updating. By utilizing stable target-states for template training, the multi-modality correlation filter is able to output a more accurate target position than the baseline and the SOTA (state-of-the-art) methods. Tested on the OTB50 (object tracking benchmark) and OTB100 dataset, the proposed TGMCF has demonstrated outstanding performance on several typical tracking difficulties and overall comparative results with the SOTA trackers are obtained on several public tracking benchmarks

    Poly(ADP-ribose) polymerases regulate cell division and development in Arabidopsis roots

    Get PDF
    Root organogenesis involves cell division, differentiation and expansion. The molecular mechanisms regulating root development are not fully understood. In this study, we identified poly (ADP-ribose) polymerases (PARPs) as new players in root development. PARP catalyzes poly (ADP-ribosyl)ation of proteins by repeatedly adding ADP-ribose units onto proteins using nicotinamide adenine dinucleotide (NAD+) as the donor. We found that inhibition of PARP activities by 3-aminobenzomide (3-AB) increased the growth rates of both primary and lateral roots, leading to a more developed root system. The double mutant of Arabidopsis PARPs, parp1parp2, showed more rapid primary and lateral root growth. Cyclin genes regulating G1-to-S and G2-to-M transition were up-regulated upon treatment by 3-AB. The proportion of 2C cells increased while cells with higher DNA ploidy cells declined in the roots of treated plants, resulting in an enlarged rootmeristematic zone. The expression level of PARP2 was very low in the meristematic zone but high in the maturation zones, consistent with a role of PARP in inhibiting mitosis and promoting cell differentiation. Our results suggest that PARPs play an important rolein root development by negatively regulating root cell division

    Automatic unpaired shape deformation transfer

    Get PDF
    Transferring deformation from a source shape to a target shape is a very useful technique in computer graphics. State-of-the-art deformation transfer methods require either point-wise correspondences between source and target shapes, or pairs of deformed source and target shapes with corresponding deformations. However, in most cases, such correspondences are not available and cannot be reliably established using an automatic algorithm. Therefore, substantial user effort is needed to label the correspondences or to obtain and specify such shape sets. In this work, we propose a novel approach to automatic deformation transfer between two unpaired shape sets without correspondences. 3D deformation is represented in a high-dimensional space. To obtain a more compact and effective representation, two convolutional variational autoencoders are learned to encode source and target shapes to their latent spaces. We exploit a Generative Adversarial Network (GAN) to map deformed source shapes to deformed target shapes, both in the latent spaces, which ensures the obtained shapes from the mapping are indistinguishable from the target shapes. This is still an under-constrained problem, so we further utilize a reverse mapping from target shapes to source shapes and incorporate cycle consistency loss, i.e. applying both mappings should reverse to the input shape. This VAE-Cycle GAN (VC-GAN) architecture is used to build a reliable mapping between shape spaces. Finally, a similarity constraint is employed to ensure the mapping is consistent with visual similarity, achieved by learning a similarity neural network that takes the embedding vectors from the source and target latent spaces and predicts the light field distance between the corresponding shapes. Experimental results show that our fully automatic method is able to obtain high-quality deformation transfer results with unpaired data sets, comparable or better than existing methods where strict correspondences are required

    STUDY OF THE THERMAL ENVIRONMENT AND MARGINAL EFFECTS OF A SUNKEN SOLAR GREENHOUSE

    Get PDF
    ABSTRACT A sunken solar greenhouse is a unique structure used in China that has good thermal performance and a low cost. To explore the thermal environment and the marginal effect area under the trellis membrane in a sunken solar greenhouse, daytime heat absorption and nighttime exothermic models of the greenhouse were established based on existing theories and hypotheses. An experimental study of the three-dimensional thermal environment of a solar greenhouse was also conducted in the Jinzhong Basin of Shanxi Province. The daytime heat absorption model described how the internal thermal environment of the greenhouse changes in three dimensions, while the nighttime model calculated the amount of heat released at night. The results showed that the rate of change in the maximum temperature difference along the height direction in the greenhouse was 13 times that along the vertical direction, and three times that along the horizontal direction. We also observed that the marginal effect area under the membrane varied over time and by month. The minimum value of the marginal effect area occurred at the middle cross-section, spanning the middle position of the greenhouse, and the maximum height was 2.7 m. The results of this study can provide theoretical guidance and experimental data for the thermal environment of greenhouses of the same type in the Jinzhong Basin of Shanxi Province, thus providing a basis for environmental regulation and low-temperature margins in greenhouses

    A giant glitch from the magnetar SGR J1935+2154 before FRB 200428

    Full text link
    Fast radio bursts (FRBs) are short pulses observed in radio frequencies usually originating from cosmological distances. The discovery of FRB 200428 and its X-ray counterpart from the Galactic magnetar SGR J1935+2154 suggests that at least some FRBs can be generated by magnetars. However, the majority of X-ray bursts from magnetars are not associated with radio emission. The fact that only in rare cases can an FRB be generated raises the question regarding the special triggering mechanism of FRBs. Here we report a giant glitch from SGR J1935+2154, which occurred approximately 3.1±2.53.1\pm2.5\,day before FRB 200428, with ΔΜ=19.8±1.4\Delta\nu=19.8\pm1.4 {\rm ÎŒ\muHz} and ΔΜ˙=6.3±1.1\Delta\dot{\nu}=6.3\pm1.1\,pHz s−1^{-1}. The corresponding spin-down power change rate ΔΜ˙/Μ˙\Delta\dot\nu/\dot\nu is among the largest in all the detected pulsar glitches. The glitch contains a delayed spin-up process that is only detected in the Crab pulsar and the magnetar 1E 2259+586, a large persistent offset of the spin-down rate, and a recovery component which is about one order of magnitude smaller than the persistent one. The temporal coincidence between the glitch and FRB 200428 suggests a physical connection between the two. The internally triggered giant glitch of the magnetar likely altered the magnetosphere structure dramatically in favour of FRB generation, which subsequently triggered many X-ray bursts and eventually FRB 200428 through additional crustal cracking and Alfv\'en wave excitation and propagation

    Genetic and pathogenic characterizations of a naturally occurring reassortant and homologous recombinant strain of the classical infectious bursal disease virus re-emerging in chickens in southern China

    Get PDF
    Infectious bursal disease (IBD) classical virus strain (cIBDV) can cause morbidity and mortality in young chickens with severe long-term immunosuppression. However, since the emergence and widespread prevalence of very virulent strain (vvIBDV) in China from 1991, reports of cIBDV have become rare. A novel reassortant and recombinant strain GXYL211225 (genotype A1aB1a) with segment A originating from the classical strain (A1a) and segment B from the attenuated vaccine strain (B1a) was characterized in the study. Notably, segment A resulted from recombination between the cIBDV strains 150127-0.2 and Faragher52-70, expressing as a backbone from 150127-0.2, where a fragment located at the position of nucleotide (nt) 519-1 410 was replaced by the corresponding region of Faragher52-70. The infection of GXYL211225 caused mortality in SPF chicken embryos, despite lacking the critical amino acid (aa) residues 253H, 279 N and 284A associated with the cellular tropism, and induced significant cytopathic effect (CPE) on a wide range of cells, confirming its natural cell-adapted character. Furthermore, the challenge experiment of GXYL211225 was performed on the commercial Three-yellow chickens of 4-week-old, and with the vvIBDV HLJ-0504-like strain NN1172 and the novel variant (nv) IBDV strain QZ191002 as the comparison. All the challenged birds experienced reduced body-weight gain. QZ191002 infected birds showed no obvious clinical symptoms or mortality, while those of NN1172 and GXYL211225 showed typical IBD symptoms and resulted in 20% (2/10) and 10% (1/10) of mortality rates, respectively. At 7 days post-challenge (dpc), the damages of bursal of Fabricius (BF) varied among groups, with NN1172 causing the most severe lesions, followed by GXYL211225, and then QZ191002. It was also found that the pathogenicity was correlated positively with the viral load, aligning with the histopathological severity in BF. The study confirms the rapid and diverse evolution of the re-emerged classical strains in the field and emphasizes the need to monitor the changes of IBDV on both the genetic and pathogenic aspects for the effective control of the disease

    Triptolide Inhibits the Proliferation of Prostate Cancer Cells and Down-Regulates SUMO-Specific Protease 1 Expression

    Get PDF
    Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa
    • 

    corecore