64 research outputs found
The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone
Bone metastases are frequent complications of malignant melanoma leading to reduced quality of life and significant morbidity. Regulation of immune cells by the gut microbiome influences cancer progression, but the role of the microbiome in tumor growth in bone is unknown. Using intracardiac or intratibial injections of B16-F10 melanoma cells into mice, we showed that gut microbiome depletion by broad-spectrum antibiotics accelerated intraosseous tumor growth and osteolysis. Microbiome depletion blunted melanoma-induced expansion of intestinal NK cells and Th1 cells and their migration from the gut to tumor-bearing bones. Demonstrating the functional relevance of immune cell trafficking from the gut to the bone marrow (BM) in bone metastasis, blockade of S1P-mediated intestinal egress of NK and Th1 cells, or inhibition of their CXCR3/CXCL9-mediated influx into the BM, prevented the expansion of BM NK and Th1 cells and accelerated tumor growth and osteolysis. Using a mouse model, this study revealed mechanisms of microbiota-mediated gut-bone crosstalk that are relevant to the immunological restraint of melanoma metastasis and tumor growth in bone. Microbiome modifications induced by antibiotics might have negative clinical consequences in patients with melanoma
Acute and Chronic B Cell Depletion Disrupts CD4 + and CD8 + T Cell Homeostasis and Expansion during Acute Viral Infection in Mice
B cells provide humoral protection against pathogens and promote cellular immunity through diverse nonclassical effector functions. To assess B cell function in promoting T cell homeostasis, mature B cells were either acutely or chronically depleted in mice using CD20 mAb. Acute B cell depletion in either 2- or 4-mo-old mice significantly reduced spleen and lymph node CD4+ and CD8+ T cell numbers, including naive, activated, and Foxp3+CD25+CD4+ regulatory T cell subsets. The numbers of IFN-γ– and TNF-α–producing T cells were also significantly reduced. Chronic B cell depletion for 6 mo in aged naive mice resulted in a 40–70% reduction in activated CD4+ and CD8+ T cell numbers and 20–50% reductions in IFN-γ–producing T cells. Therefore, B cells were necessary for maintaining naive CD4+ and CD8+ T cell homeostasis for subsequent optimal T cell expansion in young and old mice. To determine the significance of this finding, a week of B cell depletion in 4-mo-old mice was followed by acute viral infection with lymphocytic choriomeningitis virus Armstrong. Despite their expansion, activated and cytokine-producing CD4+ and CD8+ T cell numbers were still significantly reduced 1 wk later. Moreover, viral peptide-specific CD4+ and CD8+ T cell numbers and effector cell development were significantly reduced in mice lacking B cells, whereas lymphocytic choriomeningitis virus titers were dramatically increased. Thus, T cell function is maintained in B cell–depleted mice, but B cells are required for optimal CD4+ and CD8+ T cell homeostasis, activation, and effector development in vivo, particularly during responses to acute viral infection
T Lymphocytes Amplify the Anabolic Activity of Parathyroid Hormone through Wnt10b Signaling
SummaryIntermittent administration of parathyroid hormone (iPTH) is used to treat osteoporosis because it improves bone architecture and strength, but the underlying cellular and molecular mechanisms are unclear. Here, we show that iPTH increases the production of Wnt10b by bone marrow CD8+ TÂ cells and induces these lymphocytes to activate canonical Wnt signaling in preosteoblasts. Accordingly, in responses to iPTH, TÂ cell null mice display diminished Wnt signaling in preosteoblasts and blunted osteoblastic commitment, proliferation, differentiation, and life span, which result in decreased trabecular bone anabolism and no increase in strength. Demonstrating the specific role of lymphocytic Wnt10b, iPTH has no anabolic activity in mice lacking T-cell-produced Wnt10b. Therefore, T-cell-mediated activation of Wnt signaling in osteoblastic cells plays a key permissive role in the mechanism by which iPTH increases bone strength, suggesting that TÂ cell osteoblast crosstalk pathways may provide pharmacological targets for bone anabolism
Differential CD4+ cell count increase and CD4+ : CD8+ ratio normalization with maraviroc compared with tenofovir
Studies exploring the immunologic effects of maraviroc (MVC) have produced mixed results; hence it remains unclear whether MVC has unique immunologic effects in comparison to other antiretroviral drugs. We sought to determine whether MVC has differential effects compared to tenofovir disoproxil fumarate (TDF) during initial antiretroviral therapy
Disruption of PTH Receptor 1 in T Cells Protects against PTH-Induced Bone Loss
Hyperparathyroidism in humans and continuous parathyroid hormone (cPTH) treatment in mice cause bone loss by regulating the production of RANKL and OPG by stromal cells (SCs) and osteoblasts (OBs). Recently, it has been reported that T cells are required for cPTH to induce bone loss as the binding of the T cell costimulatory molecule CD40L to SC receptor CD40 augments SC sensitivity to cPTH. However it is unknown whether direct PTH stimulation of T cells is required for cPTH to induce bone loss, and whether T cells contribute to the bone catabolic activity of PTH with mechanisms other than induction of CD40 signaling in SCs.Here we show that silencing of PTH receptor 1 (PPR) in T cells blocks the bone loss and the osteoclastic expansion induced by cPTH, thus demonstrating that PPR signaling in T cells is central for PTH-induced reduction of bone mass. Mechanistic studies revealed that PTH activation of the T cell PPR stimulates T cell production of the osteoclastogenic cytokine tumor necrosis factor alpha (TNF). Attesting to the relevance of this effect, disruption of T cell TNF production prevents PTH-induced bone loss. We also show that a novel mechanism by which TNF mediates PTH induced osteoclast formation is upregulation of CD40 expression in SCs, which increases their RANKL/OPG production ratio.These findings demonstrate that PPR signaling in T cells plays an essential role in PTH induced bone loss by promoting T cell production of TNF. A previously unknown effect of TNF is to increase SC expression of CD40, which in turn increases SC osteoclastogenic activity by upregulating their RANKL/OPG production ratio. PPR-dependent stimulation of TNF production by T cells and the resulting TNF regulation of CD40 signaling in SCs are potential new therapeutic targets for the bone loss of hyperparathyroidism
- …