1,712 research outputs found

    Nonlinear viscoelasticity of metastable complex fluids

    Full text link
    Many metastable complex fluids such as colloidal glasses and gels show distinct nonlinear viscoelasticity with increasing oscillatory-strain amplitude; the storage modulus decreases monotonically as the strain amplitude increases whereas the loss modulus has a distinct peak before it decreases at larger strains. We present a qualitative argument to explain this ubiquitous behavior and use mode coupling theory (MCT) to confirm it. We compare theoretical predictions to the measured nonlinear viscoelasticity in a dense hard sphere colloidal suspensions; reasonable agreement is obtained. The argument given here can be used to obtain new information about linear viscoelasticity of metastable complex fluids from nonlinear strain measurements.Comment: 7 pages, 3 figures, accepted for publication in Europhys. Let

    A multi-color fast-switching microfluidic droplet dye laser

    Get PDF
    We describe a multi-color microfluidic dye laser operating in whispering gallery mode based on a train of alternating droplets containing solutions of different dyes; this laser is capable of switching the wavelength of its emission between 580 nm and 680 nm at frequencies up to 3.6 kHz -— the fastest among all dye lasers reported; it has potential applications in on-chip spectroscopy and flow cytometry

    Microrheology probes length scale dependent rheology

    Get PDF
    We exploit the power of microrheology to measure the viscoelasticity of entangled F-actin solutions at different length scales from 1 to 100 mu m over a wide frequency range. We compare the behavior of single probe-particle motion to that of the correlated motion of two particles. By varying the average length of the filaments, we identify fluctuations that dissipate diffusively over the filament length. These provide an important relaxation mechanism of the elasticity between 0.1 and 30 rad/sec

    Properties of cage rearrangements observed near the colloidal glass transition

    Full text link
    We use confocal microscopy to study the motions of particles in concentrated colloidal systems. Near the glass transition, diffusive motion is inhibited, as particles spend time trapped in transient ``cages'' formed by neighboring particles. We measure the cage sizes and lifetimes, which respectively shrink and grow as the glass transition approaches. Cage rearrangements are more prevalent in regions with lower local concentrations and higher disorder. Neighboring rearranging particles typically move in parallel directions, although a nontrivial fraction move in anti-parallel directions, usually from pairs of particles with initial separations corresponding to the local maxima and minima of the pair correlation function g(r)g(r), respectively.Comment: 5 pages, 4 figures; text & figures revised in v

    Antibody-Based Ticagrelor Reversal Agent in Healthy Volunteers.

    Get PDF
    BACKGROUND: Ticagrelor is an oral P2Y12 inhibitor that is used with aspirin to reduce the risk of ischemic events among patients with acute coronary syndromes or previous myocardial infarction. Spontaneous major bleeding and bleeding associated with urgent invasive procedures are concerns with ticagrelor, as with other antiplatelet drugs. The antiplatelet effects of ticagrelor cannot be reversed with platelet transfusion. A rapid-acting reversal agent would be useful. METHODS: In this randomized, double-blind, placebo-controlled, phase 1 trial, we evaluated intravenous PB2452, a monoclonal antibody fragment that binds ticagrelor with high affinity, as a ticagrelor reversal agent. We assessed platelet function in healthy volunteers before and after 48 hours of ticagrelor pretreatment and again after the administration of PB2452 or placebo. Platelet function was assessed with the use of light transmission aggregometry, a point-of-care P2Y12 platelet-reactivity test, and a vasodilator-stimulated phosphoprotein assay. RESULTS: Of the 64 volunteers who underwent randomization, 48 were assigned to receive PB2452 and 16 to receive placebo. After 48 hours of ticagrelor pretreatment, platelet aggregation was suppressed by approximately 80%. PB2452 administered as an initial intravenous bolus followed by a prolonged infusion (8, 12, or 16 hours) was associated with a significantly greater increase in platelet function than placebo, as measured by multiple assays. Ticagrelor reversal occurred within 5 minutes after the initiation of PB2452 and was sustained for more than 20 hours (P\u3c0.001 after Bonferroni adjustment across all time points for all assays). There was no evidence of a rebound in platelet activity after drug cessation. Adverse events related to the trial drug were limited mainly to issues involving the infusion site. CONCLUSIONS: In healthy volunteers, the administration of PB2452, a specific reversal agent for ticagrelor, provided immediate and sustained reversal of the antiplatelet effects of ticagrelor, as measured by multiple assays. (Funded by PhaseBio Pharmaceuticals; ClinicalTrials.gov number, NCT03492385.)

    Self-consistent local-equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields

    Full text link
    Recent spatially resolved measurements of the electrostatic-potential variation across a Hall bar in strong magnetic fields, which revealed a clear correlation between current-carrying strips and incompressible strips expected near the edges of the Hall bar, cannot be understood on the basis of existing equilibrium theories. To explain these experiments, we generalize the Thomas-Fermi--Poisson approach for the self-consistent calculation of electrostatic potential and electron density in {\em total} thermal equilibrium to a {\em local equilibrium} theory that allows to treat finite gradients of the electrochemical potential as driving forces of currents in the presence of dissipation. A conventional conductivity model with small values of the longitudinal conductivity for integer values of the (local) Landau-level filling factor shows that, in apparent agreement with experiment, the current density is localized near incompressible strips, whose location and width in turn depend on the applied current.Comment: 9 pages, 7 figure

    A primer for microbiome time-series analysis

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coenen, A. R., Hu, S. K., Luo, E., Muratore, D., & Weitz, J. S. A primer for microbiome time-series analysis. Frontiers in Genetics, 11, (2020): 310, doi:10.3389/fgene.2020.00310.Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.This work was supported by the Simons Foundation (SCOPE award ID 329108) and the National Science Foundation (NSF Bio Oc 1829636)

    Drying of complex suspensions

    Full text link
    We investigate the 3D structure and drying dynamics of complex mixtures of emulsion droplets and colloidal particles, using confocal microscopy. Air invades and rapidly collapses large emulsion droplets, forcing their contents into the surrounding porous particle pack at a rate proportional to the square of the droplet radius. By contrast, small droplets do not collapse, but remain intact and are merely deformed. A simple model coupling the Laplace pressure to Darcy's law correctly estimates both the threshold radius separating these two behaviors, and the rate of large-droplet evacuation. Finally, we use these systems to make novel hierarchical structures.Comment: 4 pages, 4 figure

    Control Plane Compression

    Full text link
    We develop an algorithm capable of compressing large networks into a smaller ones with similar control plane behavior: For every stable routing solution in the large, original network, there exists a corresponding solution in the compressed network, and vice versa. Our compression algorithm preserves a wide variety of network properties including reachability, loop freedom, and path length. Consequently, operators may speed up network analysis, based on simulation, emulation, or verification, by analyzing only the compressed network. Our approach is based on a new theory of control plane equivalence. We implement these ideas in a tool called Bonsai and apply it to real and synthetic networks. Bonsai can shrink real networks by over a factor of 5 and speed up analysis by several orders of magnitude.Comment: Extended version of the paper appearing in ACM SIGCOMM 201
    corecore