270 research outputs found
Study of effects of fuel properties in turbine-powered business aircraft
Increased interest in research and technology concerning aviation turbine fuels and their properties was prompted by recent changes in the supply and demand situation of these fuels. The most obvious change is the rapid increase in fuel price. For commercial airplanes, fuel costs now approach 50 percent of the direct operating costs. In addition, there were occasional local supply disruptions and gradual shifts in delivered values of certain fuel properties. Dwindling petroleum reserves and the politically sensitive nature of the major world suppliers make the continuation of these trends likely. A summary of the principal findings, and conclusions are presented. Much of the material, especially the tables and graphs, is considered in greater detail later. The economic analysis and examination of operational considerations are described. Because some of the assumptions on which the economic analysis is founded are not easily verified, the sensitivity of the analysis to alternates for these assumptions is examined. The data base on which the analyses are founded is defined in a set of appendices
Electron quantum metamaterials in van der Waals heterostructures
In recent decades, scientists have developed the means to engineer synthetic
periodic arrays with feature sizes below the wavelength of light. When such
features are appropriately structured, electromagnetic radiation can be
manipulated in unusual ways, resulting in optical metamaterials whose function
is directly controlled through nanoscale structure. Nature, too, has adopted
such techniques -- for example in the unique coloring of butterfly wings -- to
manipulate photons as they propagate through nanoscale periodic assemblies. In
this Perspective, we highlight the intriguing potential of designer
sub-electron wavelength (as well as wavelength-scale) structuring of electronic
matter, which affords a new range of synthetic quantum metamaterials with
unconventional responses. Driven by experimental developments in stacking
atomically layered heterostructures -- e.g., mechanical pick-up/transfer
assembly -- atomic scale registrations and structures can be readily tuned over
distances smaller than characteristic electronic length-scales (such as
electron wavelength, screening length, and electron mean free path). Yet
electronic metamaterials promise far richer categories of behavior than those
found in conventional optical metamaterial technologies. This is because unlike
photons that scarcely interact with each other, electrons in subwavelength
structured metamaterials are charged, and strongly interact. As a result, an
enormous variety of emergent phenomena can be expected, and radically new
classes of interacting quantum metamaterials designed
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Detection of occult carcinomatous diffusion in lymph nodes from head and neck squamous cell carcinoma using real-time RT–PCR detection of cytokeratin 19 mRNA
The aim of the present study was to evaluate the occult lymph node carcinomatous diffusion in head and neck squamous cell carcinoma (HNSCC). A total of 1328 lymph nodes from 31 patients treated between 2004 and 2005 were prospectively evaluated by routine haematoxylin–eosin–safran (HES) staining, immunohistochemistry (IHC) and real-time Taqman reverse–transcriptase polymerase chain reaction (real-time RT–PCR) assay. Amplification of cytokeratin 19 (CK19) mRNA transcripts using real-time RT–PCR was used to quantify cervical micrometastatic burden. The cervical lymph node metastatic rates determined by routine HES staining and real-time RT–PCR assay were 16.3 and 36.0%, respectively (P<0.0001). A potential change in the nodal status was observed in 13 (42.0%) of the 31 patients and an atypical pattern of lymphatic spread was identified in four patients (12.9%). Moreover, CK19 mRNA expression values in histologically positive lymph nodes were significantly higher than those observed in histologically negative lymph nodes (P<0.0001). These results indicate that real-time RT–PCR assay for the detection of CK19 mRNA is a sensitive and reliable method for the detection of carcinomatous cells in lymph nodes. This type of method could be used to reassess lymph node status according to occult lymphatic spread in patients with HNSCC
Use of Aspirin postdiagnosis improves survival for colon cancer patients
Background: The preventive role of non-steroid anti-inflammatory drugs (NSAIDs) and aspirin, in particular, on colorectal cancer is well established. More recently, it has been suggested that aspirin may also have a therapeutic role. Aim of the present observational population-based study was to assess the therapeutic effect on overall survival of aspirin/NSAIDs as adjuvant treatment used after the diagnosis of colorectal cancer patients. Methods: Data concerning prescriptions were obtained from PHARMO record linkage systems and all patients diagnosed with colorectal cancer (1998-2007) were selected from the Eindhoven Cancer Registry (population-based cancer registry). Aspirin/NSAID use was classified as none, prediagnosis and postdiagnosis and only postdiagnosis. Patients were defined as non-user of aspirin/NSAIDs from the date of diagnosis of the colorectal cancer to the date of first use of aspirin or NSAIDs and user from first use to the end of follow-up. Poisson regression was performed with user status as time-varying exposure.Results:In total, 1176 (26%) patients were non-users, 2086 (47%) were prediagnosis and postdiagnosis users and 1219 (27%) were only postdiagnosis users (total n=4481). Compared with non-users, a survival gain was observed for aspirin users; the adjusted rate ratio (RR) was 0.77 (95% confidence interval (CI) 0.63-0.95; P=0.015). Stratified for colon and rectal, the survival gain was only present in colon cancer (adjusted RR 0.65 (95%CI 0.50-0.84; P=0.001)). For frequent users survival gain was larger (adjusted RR 0.61 (95%CI 0.46-0.81; P=0.001). In rectal cancer, aspirin use was not associated with survival (adjusted RR 1.10 (95%CI 0.79-1.54; P=0.6). The NSAIDs use was associated with decreased survival (adjusted RR 1.93 (95%CI 1.70-2.20; P<0.001). Conclusion: Aspirin use initiated or continued after diagnosis of colon cancer is associated with a lower risk of overall mortality. These findings strongly support initiation of a placebo-controlled trial that investigates the role of aspirin as adjuvant treatment in colon cancer patients
The deuteron: structure and form factors
A brief review of the history of the discovery of the deuteron in provided.
The current status of both experiment and theory for the elastic electron
scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic
The prognostic impact of anti-cancer immune response: a novel classification of cancer patients
Until now, the anatomic extent of tumor (TNM classification) has been, by far, the most important factor to predict the prognosis of colorectal cancer patients. However, in recent years, data collected from large cohorts of human cancers demonstrated that the immune contexture of the primary tumors is an essential prognostic factor for patients' disease-free and overall survival. Global analysis of tumor microenvironment showed that the nature, the functional orientation, the density, and the location of adaptive immune cells within distinct tumor regions influence the risk of relapse events. An immune classification of the patients was proposed based on the density and the immune cell location within the tumor. The immune classification has a prognostic value that is superior to the TNM classification, and tumor invasion is statistically dependent on the host immune reaction. Tumor and immunological markers predicted by systems biology methods are involved in the shaping of an efficient immune reaction and can serve as targets for novel therapeutic approaches. Thus, the strength of the immune reaction could advance our understanding of cancer evolution and have important consequences in clinical practice
Quantum Spacetime Phenomenology
I review the current status of phenomenological programs inspired by
quantum-spacetime research. I stress in particular the significance of results
establishing that certain data analyses provide sensitivity to effects
introduced genuinely at the Planck scale. And my main focus is on
phenomenological programs that managed to affect the directions taken by
studies of quantum-spacetime theories.Comment: 125 pages, LaTex. This V2 is updated and more detailed than the V1,
particularly for quantum-spacetime phenomenology. The main text of this V2 is
about 25% more than the main text of the V1. Reference list roughly double
Accumulation of CCR4+ CTLA-4hi FOXP3+CD25hi Regulatory T Cells in Colon Adenocarcinomas Correlate to Reduced Activation of Conventional T Cells
BACKGROUND: Colorectal cancer usually gives rise to a specific anti-tumor immune response, but for unknown reasons the resulting immunity is not able to clear the tumor. Recruitment of activated effector lymphocytes to the tumor is important for efficient anti-tumor responses, while the presence of regulatory T cells (Treg) down-modulate tumor-specific immunity. We therefore aimed to determine homing mechanisms and activation stage of Treg and effector T cell infiltrating colon tumors compared to cells from the unaffected mucosa in patients suffering from colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: Lymphocytes were isolated from unaffected and tumor mucosa from patients with colon adenocarcinoma, and flow cytometry, immunohistochemistry, and quantitative PCR was used to investigate the homing mechanisms and activation stage of infiltrating Treg and conventional lymphocytes. We detected significantly higher frequencies of CD25(high)FOXP3⁺CD127(low) putative Treg in tumors than unaffected mucosa, which had a complete demethylation in the FOXP3 promotor. Tumor-associated Treg had a high expression of CTLA-4, and some appeared to be antigen experienced effector/memory cells based on their expression of αEβ7 (CD103). There were also significantly fewer activated T cells and more CTLA-4⁺ conventional T cells susceptible to immune regulation in the tumor-associated mucosa. In contrast, CD8⁺granzyme B⁺ putative cytotoxic cells were efficiently recruited to the tumors. The frequencies of cells expressing α4β7 and the Th1 associated chemokine receptor CXCR3 were significantly decreased among CD4⁺ T cells in the tumor, while frequencies of CD4⁺CCR4⁺ lymphocytes were significantly increased. CONCLUSIONS/SIGNIFICANCE: This study shows that CCR4⁺CTLA4(hi) Treg accumulate in colon tumors, while the frequencies of activated conventional Th1 type T cells are decreased. The altered lymphocyte composition in colon tumors will probably diminish the ability of the immune system to effectively attack tumor cells, and reducing the Treg activity is an important challenge for future immunotherapy protocols
2021 Update of the International Council for Standardization in Haematology Recommendations for Laboratory Measurement of Direct Oral Anticoagulants
International audienceIn 2018, the International Council for Standardization in Haematology (ICSH) published a consensus document providing guidance for laboratories on measuring direct oral anticoagulants (DOACs). Since that publication, several significant changes related to DOACs have occurred, including the approval of a new DOAC by the Food and Drug Administration, betrixaban, and a specific DOAC reversal agent intended for use when the reversal of anticoagulation with apixaban or rivaroxaban is needed due to life-threatening or uncontrolled bleeding, andexanet alfa. In addition, this ICSH Working Party recognized areas where additional information was warranted, including patient population considerations and updates in point-of-care testing. The information in this manuscript supplements our previous ICSH DOAC laboratory guidance document. The recommendations provided are based on (1) information from peer-reviewed publications about laboratory measurement of DOACs, (2) contributing author's personal experience/expert opinion and (3) good laboratory practice
- …