2 research outputs found
Quantitative analysis of in-TIPS thrombosis in abdominal CT
Purpose: To identify transjugular intrahepatic portosystemic shunt (TIPS) thrombosis in abdominal CT scans applying quantitative image analysis.
Materials and methods: We retrospectively screened 184 patients to include 20 patients (male, 8; female, 12; mean age, 60.7 ± 8.87 years) with (case, n = 10) and without (control, n = 10) in-TIPS thrombosis who underwent clinically indicated contrast-enhanced and unenhanced abdominal CT followed by conventional TIPS-angiography between 08/2014 and 06/2020. First, images were scored visually. Second, region of interest (ROI) based quantitative measurements of CT attenuation were performed in the inferior vena cava (IVC), portal vein and in four TIPS locations. Minimum, maximum and average Hounsfield unit (HU) values were used as absolute and relative quantitative features. We analyzed the features with univariate testing.
Results: Subjective scores identified in-TIPS thrombosis in contrast-enhanced scans with an accuracy of 0.667 – 0.833. Patients with in-TIPS thrombosis had significantly lower average (p < 0.001), minimum (p < 0.001) and maximum HU (p = 0.043) in contrast-enhanced images. The in-TIPS / IVC ratio in contrast-enhanced images was significantly lower in patients with in-TIPS thrombosis (p < 0.001). No significant differences were found for unenhanced images. Analyzing the visually most suspicious ROI with consecutive calculation of its ratio to the IVC, all patients with a ratio < 1 suffered from in-TIPS thrombosis (p < 0.001, sensitivity and specificity = 100%).
Conclusion: Quantitative analysis of abdominal CT scans facilitates the stratification of in-TIPS thrombosis. In contrast-enhanced scans, an in-TIPS / IVC ratio < 1 could non-invasively stratify all patients with in-TIPS thrombosis
Imaging biomarkers to stratify lymph node metastases in abdominal CT – Is radiomics superior to dual-energy material decomposition?
Purpose: To assess the potential of radiomic features in comparison to dual-energy CT (DECT) material decomposition to objectively stratify abdominal lymph node metastases. Materials and methods: In this retrospective study, we included 81 patients (m, 57; median age, 65 (interquartile range, 58.7–73.3) years) with either lymph node metastases (n = 36) or benign lymph nodes (n = 45) who underwent contrast-enhanced abdominal DECT between 06/2015–07/2019. All malignant lymph nodes were classified as unequivocal according to RECIST criteria and confirmed by histopathology, PET-CT or follow-up imaging. Three investigators segmented lymph nodes to extract DECT and radiomics features. Intra-class correlation analysis was applied to stratify a robust feature subset with further feature reduction by Pearson correlation analysis and LASSO. Independent training and testing datasets were applied on four different machine learning models. We calculated the performance metrics and permutation-based feature importance values to increase interpretability of the models. DeLong test was used to compare the top performing models. Results: Distance matrices and t-SNE plots revealed clearer clusters using a combination of DECT and radiomic features compared to DECT features only. Feature reduction by LASSO excluded all DECT features of the combined feature cohort. The top performing radiomic features model (AUC = 1.000; F1 = 1.000; precision = 1.000; Random Forest) was significantly superior to the top performing DECT features model (AUC = 0.942; F1 = 0.762; precision = 0.800; Stochastic Gradient Boosting) (DeLong < 0.001). Conclusion: Imaging biomarkers have the potential to stratify unequivocal lymph node metastases. Radiomics models were superior to DECT material decomposition and may serve as a support tool to facilitate stratification of abdominal lymph node metastases