1,703 research outputs found
The Lattice Parameter in Domain Wall QCD
We evaluate the ratio of the scale parameter in domain wall QCD to
the one in the continuum theory at one loop level incorporating the effect of
massless quarks. We show that the Pauli-Villars regulator is required to
subtract the unphysical massive fermion modes which emerge in the fermion loop
contributions to the gluon self energy. Detailed results are presented as a
function of the domain wall height .Comment: 16 pages, 1 figure as eps-file, some references adde
Perturbative Renormalization Factors of Bilinear Quark Operators for Improved Gluon and Quark Actions in Lattice QCD
We calculate one-loop renormalization factors of bilinear quark operators for
gluon action including six-link loops and -improved quark action in the
limit of massless quark. We find that finite parts of one-loop coefficients of
renormalization factors diminish monotonically as either of the coefficients
or of the six-link terms are decreased below zero. Detailed
numerical results are given, for general values of the clover coefficient, for
the tree-level improved gluon action in the Symanzik approach and for the choices suggested by Wilson and by Iwasaki and from renormalization-group analyses. Compared with the case of
the standard plaquette gluon action, finite parts of one-loop coefficients are
reduced by 10--20% for the Symanzik action, and approximately by a factor two
for the renormalization-group improved gluon actions.Comment: 19 pages, REVTeX, with 3 epsf figure
A quark action for very coarse lattices
We investigate a tree-level O(a^3)-accurate action, D234c, on coarse
lattices. For the improvement terms we use tadpole-improved coefficients, with
the tadpole contribution measured by the mean link in Landau gauge.
We measure the hadron spectrum for quark masses near that of the strange
quark. We find that D234c shows much better rotational invariance than the
Sheikholeslami-Wohlert action, and that mean-link tadpole improvement leads to
smaller finite-lattice-spacing errors than plaquette tadpole improvement. We
obtain accurate ratios of lattice spacings using a convenient ``Galilean
quarkonium'' method.
We explore the effects of possible O(alpha_s) changes to the improvement
coefficients, and find that the two leading coefficients can be independently
tuned: hadron masses are most sensitive to the clover coefficient, while hadron
dispersion relations are most sensitive to the third derivative coefficient
C_3. Preliminary non-perturbative tuning of these coefficients yields values
that are consistent with the expected size of perturbative corrections.Comment: 22 pages, LaTe
Mesonic decay constants in lattice NRQCD
Lattice NRQCD with leading finite lattice spacing errors removed is used to
calculate decay constants of mesons made up of heavy quarks. Quenched
simulations are done with a tadpole improved gauge action containing plaquette
and six-link rectangular terms. The tadpole factor is estimated using the
Landau link. For each of the three values of the coupling constant considered,
quarkonia are calculated for five masses spanning the range from charmonium
through bottomonium, and one set of quark masses is tuned to the B(c).
"Perturbative" and nonperturbative meson masses are compared. One-loop
perturbative matching of lattice NRQCD with continuum QCD for the heavy-heavy
vector and axial vector currents is performed. The data are consistent with the
vector meson decay constants of quarkonia being proportional to the square root
of their mass and the B(c) decay constant being equal to 420(13) MeV.Comment: 25 pages in REVTe
A more robust and flexible lattice for LHC
To correct more efficiently the arc dispersion, the exact antisymmetry of the LHC optics is now broken, except in the low-b triplets common to the two rings. A new quadrupole is added between the experimental insertions and the dispersion suppressors and several arc quadrupoles are complemented by a small trim quadrupole. The larger number of parameters gives flexibility to the lattice and allows a partial separation of the optical functions, with a decrease of the total number of quadrupole units. It is possible to change rather freely the phase advances of the arc cells. The nominal tunes are split by 4 units to reduce coupling. The bin boot tuning range in the experimental low-b is significantly increased, allowing e.g. a larger beam separation at injection. The super-periodicity of LHC remains 1. We plan to study whether it can be increased within the LHC hardware constraint
Non-perturbative quark mass renormalization
We show that the renormalization factor relating the renormalization group
invariant quark masses to the bare quark masses computed in lattice QCD can be
determined non-perturbatively. The calculation is based on an extension of a
finite-size technique previously employed to compute the running coupling in
quenched QCD. As a by-product we obtain the --parameter in this theory
with completely controlled errors.Comment: Talk given at LATTICE '97, 6 pages, Latex source, 7 eps figures,
needs epsfi
On the question of universality in \RPn and \On Lattice Sigma Models
We argue that there is no essential violation of universality in the
continuum limit of mixed \RPn and \On lattice sigma models in 2 dimensions,
contrary to opposite claims in the literature.Comment: 16 pages (latex) + 3 figures (Postscript), uuencode
Heavy-light mesons with staggered light quarks
We demonstrate the viability of improved staggered light quarks in studies of
heavy-light systems. Our method for constructing heavy-light operators exploits
the close relation between naive and staggered fermions. The new approach is
tested on quenched configurations using several staggered actionsn combined
with nonrelativistic heavy quarks. The B_s meson kinetic mass, the hyperfine
and 1P-1S splittings in B_s, and the decay constant f_{B_s} are calculated and
compared to previous quenched lattice studies. An important technical detail,
Bayesian curve-fitting, is discussed at length.Comment: 38 pages, figures included. v2: Entry in Table IX corrected and other
minor changes, version appearing in Phys. Rev.
Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics
The nuclear force acting between protons and neutrons is studied in the Monte
Carlo simulations of the fundamental theory of the strong interaction, the
quantum chromodynamics defined on the hypercubic space-time lattice. After a
brief summary of the empirical nucleon-nucleon (NN) potentials which can fit
the NN scattering experiments in high precision, we outline the basic
formulation to derive the potential between the extended objects such as the
nucleons composed of quarks. The equal-time Bethe-Salpeter amplitude is a key
ingredient for defining the NN potential on the lattice. We show the results of
the numerical simulations on a lattice with the lattice spacing fm (lattice volume (4.4 fm)) in the quenched approximation.
The calculation was carried out using the massively parallel computer Blue
Gene/L at KEK. We found that the calculated NN potential at low energy has
basic features expected from the empirical NN potentials; attraction at long
and medium distances and the repulsive core at short distance. Various future
directions along this line of research are also summarized.Comment: 13 pages, 4 figures, version accepted for publication in
"Computational Science & Discovery" (IOP
- …