2 research outputs found

    Kepler-80 Revisited: Assessing the Participation of a Newly Discovered Planet in the Resonant Chain

    Full text link
    In this paper, we consider the chain of resonances in the Kepler-80 system and evaluate the impact that the additional member of the resonant chain discovered by Shallue & Vanderburg (2018) has on the dynamics of the system and the physical parameters that can be recovered by a fit to the transit timing variations (TTVs). Ultimately, we calculate the mass of Kepler-80 g to be 0.8±0.3M⊕0.8 \pm 0.3 M_\oplus when assuming all planets have zero eccentricity, and 1.0±0.3 M⊕1.0 \pm 0.3 \ M_{\oplus} when relaxing that assumption. We show that the outer five planets are in successive three-body mean-motion resonances (MMRs). We assess the current state of two-body MMRs in the system and find that the planets do not appear to be in two-body MMRs. We find that while the existence of the additional member of the resonant chain does not significantly alter the character of the Kepler-80 three-body MMRs, it can alter the physical parameters derived from the TTVs, suggesting caution should be applied when drawing conclusions from TTVs for potentially incomplete systems. We also compare our results to those of MacDonald et al. (2021), who perform a similar analysis on the same system with a different method. Although the results of this work and MacDonald et al. (2021) show that different fit methodologies and underlying assumptions can result in different measured orbital parameters, the most secure conclusion is that which holds true across all lines of analysis: Kepler-80 contains a chain of planets in three-body MMRs but not in two-body MMRs.Comment: Accepted to A

    HD 219134 Revisited: Planet d Transit Upper Limit and Planet f Transit Nondetection with ASTERIA and TESS

    Get PDF
    HD 219134 is a K3V dwarf star with six reported radial-velocity discovered planets. The two innermost planets b and c show transits, raising the possibility of this system to be the nearest (6.53 pc), brightest (V = 5.57) example of a star with a compact multiple transiting planet system. Ground-based searches for transits of planets beyond b and c are not feasible because of the infrequent transits, long transit duration (~5 hr), shallow transit depths (<1%), and large transit time uncertainty (~half a day). We use the space-based telescopes the Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) and the Transiting Exoplanet Survey Satellite (TESS) to search for transits of planets f (P = 22.717 days and M sin i = 7.3 ± 0.04M_⊕) and d (P = 46.859 days and M sin i = 16.7 ± 0.64M_⊕). ASTERIA was a technology demonstration CubeSat with an opportunity for science in an extended program. ASTERIA observations of HD 219134 were designed to cover the 3σ transit windows for planets f and d via repeated visits over many months. While TESS has much higher sensitivity and more continuous time coverage than ASTERIA, only the HD 219134 f transit window fell within the TESS survey's observations. Our TESS photometric results definitively rule out planetary transits for HD 219134 f. We do not detect the Neptune-mass HD 219134 d transits and our ASTERIA data are sensitive to planets as small as 3.6 R_⊕. We provide TESS updated transit times and periods for HD 219134 b and c, which are designated TOI 1469.01 and 1469.02 respectively
    corecore