175 research outputs found

    G Protein-Coupled Receptor Kinase-2 (GRK-2) Controls Exploration Through Neuropeptide Signaling in Caenorhabditis Elegans

    Get PDF
    Animals alter their behavior in manners that depend on environmental conditions as well as their developmental and metabolic states. For example, C. elegans is quiescent during larval molts or during conditions of satiety. By contrast, worms enter an exploration state when removed from food. Sensory perception influences movement quiescence (defined as a lack of body movement), as well as the expression of additional locomotor states in C. elegans that are associated with increased or reduced locomotion activity, such as roaming (exploration behavior) and dwelling (local search). Here we find that movement quiescence is enhanced, and exploration behavior is reduced in G protein-coupled receptor kinase grk-2 mutant animals. grk-2 was previously shown to act in chemosensation, locomotion, and egg-laying behaviors. Using neuron-specific rescuing experiments, we show that GRK-2 acts in multiple ciliated chemosensory neurons to control exploration behavior. grk-2 acts in opposite ways from the cGMP-dependent protein kinase gene egl-4 to control movement quiescence and exploration behavior. Analysis of mutants with defects in ciliated sensory neurons indicates that grk-2 and the cilium-structure mutants act in the same pathway to control exploration behavior. We find that GRK-2 controls exploration behavior in an opposite manner from the neuropeptide receptor NPR-1 and the neuropeptides FLP-1 and FLP-18. Finally, we show that secretion of the FLP-1 neuropeptide is negatively regulated by GRK-2 and that overexpression of FLP-1 reduces exploration behavior. These results define neurons and molecular pathways that modulate movement quiescence and exploration behavior

    Position statement and updated international guideline for safe and effective whole-body electromyostimulation training-the need for common sense in WB-EMS application

    Get PDF
    Whole-Body Electromyostimulation (WB-EMS) is a training technology that enables simultaneous stimulation of all the main muscle groups with a specific impulse intensity for each electrode. The corresponding time-efficiency and joint-friendliness of WB-EMS may be particularly attractive for people unable or unmotivated to conduct (intense) conventional training protocols. However, due to the enormous metabolic and musculoskeletal impact of WB-EMS, particular attention must be paid to the application of this technology. In the past, several scientific and newspaper articles reported severe adverse effects of WB-EMS. To increase the safety of commercial non-medical WB-EMS application, recommendations "for safe and effective whole-body electromyostimulation" were launched in 2016. However, new developments and trends require an update of these recommendations to incorporate more international expertise with demonstrated experience in the application of WB-EMS. The new version of these consensus-based recommendations has been structured into 1) "general aspects of WB-EMS", 2) "preparation for training", recommendations for the 3) "WB-EMS application" itself and 4) "safety aspects during and after training". Key topics particularly addressed are 1) consistent and close supervision of WB-EMS application, 2) mandatory qualification of WB-EMS trainers, 3) anamnesis and corresponding consideration of contraindications prior to WB-EMS, 4) the participant's proper preparation for the session, 5) careful preparation of the WB-EMS novice, 6) appropriate regeneration periods between WB-EMS sessions and 7) continuous interaction between trainer and participant at a close physical distance. In summary, we are convinced that the present guideline will contribute to greater safety and effectiveness in the area of non-medical commercial WB-EMS application

    Soil mobility of surface applied polyaromatic hydrocarbons in response to simulated rainfall

    Get PDF
    Polyaromatic hydrocarbons (PAHs) are emitted from a variety of sources and can accumulate on and within surface soil layers. To investigate the level of potential risk posed by surface contaminated soils, vertical soil column experiments were conducted to assess the mobility, when leached with simulated rainwater, of six selected PAHs (naphthalene, phenanthrene, fluoranthene, pyrene, benzo(e)pyrene and benzo(ghi)perylene) with contrasting hydrophobic characteristics and molecular weights/sizes. The only PAH found in the leachate within the experimental period of 26 days was naphthalene. The lack of migration of the other applied PAHs were consistent with their low mobilities within the soil columns which generally parallelled their log Koc values. Thus only 2.3% of fluoranthene, 1.8% of pyrene, 0.2% of benzo(e)pyrene and 0.4% of benzo(ghi)perylene were translocated below the surface layer. The PAH distributions in the soil columns followed decreasing power relationships with 90% reductions in the starting levels being shown to occur within a maximum average depth of 0.94 cm compared to an average starting depth of 0.5 cm. A simple predictive model identifies the extensive time periods, in excess of 10 years, required to mobilise 50% of the benzo(e)pyrene and benzo(ghi)perylene from the surface soil layer. Although this reduces to between 2 and 7 years for fluoranthene and pyrene, it is concluded that the possibility of surface applied PAHs reaching and contaminating a groundwater aquifer is unlikely

    Evagination of Cells Controls Bio-Silica Formation and Maturation during Spicule Formation in Sponges

    Get PDF
    The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three phases: (I) formation of an axial canal; (II) evagination of a cell process into the axial canal, and (III) assembly of the axial filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all around the spicule. The membranes of the silicasomes are interspersed by pores of ≈2 nm that are likely associated with aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can summarize the sequence of events that govern spicule formation as follows: differential genetic readout (of silicatein) → fractal association of the silicateins → evagination of cells by hydro-mechanical forces into the axial canal → and finally processive bio-silica polycondensation around the axial canal. We termed this process, occurring sequentially or in parallel, bio-inorganic self-organization
    • …
    corecore