24 research outputs found
Making Neural QA as Simple as Possible but not Simpler
Recent development of large-scale question answering (QA) datasets triggered
a substantial amount of research into end-to-end neural architectures for QA.
Increasingly complex systems have been conceived without comparison to simpler
neural baseline systems that would justify their complexity. In this work, we
propose a simple heuristic that guides the development of neural baseline
systems for the extractive QA task. We find that there are two ingredients
necessary for building a high-performing neural QA system: first, the awareness
of question words while processing the context and second, a composition
function that goes beyond simple bag-of-words modeling, such as recurrent
neural networks. Our results show that FastQA, a system that meets these two
requirements, can achieve very competitive performance compared with existing
models. We argue that this surprising finding puts results of previous systems
and the complexity of recent QA datasets into perspective
Neural Question Answering at BioASQ 5B
This paper describes our submission to the 2017 BioASQ challenge. We
participated in Task B, Phase B which is concerned with biomedical question
answering (QA). We focus on factoid and list question, using an extractive QA
model, that is, we restrict our system to output substrings of the provided
text snippets. At the core of our system, we use FastQA, a state-of-the-art
neural QA system. We extended it with biomedical word embeddings and changed
its answer layer to be able to answer list questions in addition to factoid
questions. We pre-trained the model on a large-scale open-domain QA dataset,
SQuAD, and then fine-tuned the parameters on the BioASQ training set. With our
approach, we achieve state-of-the-art results on factoid questions and
competitive results on list questions
Object-Centric Learning with Slot Attention
Learning object-centric representations of complex scenes is a promising step
towards enabling efficient abstract reasoning from low-level perceptual
features. Yet, most deep learning approaches learn distributed representations
that do not capture the compositional properties of natural scenes. In this
paper, we present the Slot Attention module, an architectural component that
interfaces with perceptual representations such as the output of a
convolutional neural network and produces a set of task-dependent abstract
representations which we call slots. These slots are exchangeable and can bind
to any object in the input by specializing through a competitive procedure over
multiple rounds of attention. We empirically demonstrate that Slot Attention
can extract object-centric representations that enable generalization to unseen
compositions when trained on unsupervised object discovery and supervised
property prediction tasks
Jack the reader : a machine reading framework
Many Machine Reading and Natural Language Understanding tasks require reading supporting text in order to answer questions. For example, in Question Answering, the supporting text can be newswire orWikipedia articles; in Natural Language Inference, premises can be seen as the supporting text and hypotheses as questions. Providing a set of useful primitives operating in a single framework of related tasks would allow for expressive modelling, and easier model comparison and replication. To that end, we present Jack the Reader (JACK), a framework for Machine Reading that allows for quick model prototyping by component reuse, evaluation of new models on existing datasets as well as integrating new datasets and applying them on a growing set of implemented baseline models. JACK is currently supporting (but not limited to) three tasks: Question Answering, Natural Language Inference, and Link Prediction. It is developed with the aim of increasing research efficiency and code reuse
Jack the Reader - A Machine Reading Framework
Many Machine Reading and Natural Language Understanding tasks require reading
supporting text in order to answer questions. For example, in Question
Answering, the supporting text can be newswire or Wikipedia articles; in
Natural Language Inference, premises can be seen as the supporting text and
hypotheses as questions. Providing a set of useful primitives operating in a
single framework of related tasks would allow for expressive modelling, and
easier model comparison and replication. To that end, we present Jack the
Reader (Jack), a framework for Machine Reading that allows for quick model
prototyping by component reuse, evaluation of new models on existing datasets
as well as integrating new datasets and applying them on a growing set of
implemented baseline models. Jack is currently supporting (but not limited to)
three tasks: Question Answering, Natural Language Inference, and Link
Prediction. It is developed with the aim of increasing research efficiency and
code reuse.Comment: Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL 2018), System Demonstration