3 research outputs found

    Global Responses of Il-1β-Primed 3D Tendon Constructs to Treatment with Pulsed Electromagnetic Fields

    No full text
    Tendinopathy is accompanied by a cascade of inflammatory events promoting tendon degeneration. Among various cytokines, interleukin-1β plays a central role in driving catabolic processes, ultimately resulting in the activation of matrix metalloproteinases and a diminished collagen synthesis, both of which promote tendon extracellular matrix degradation. Pulsed electromagnetic field (PEMF) therapy is often used for pain management, osteoarthritis, and delayed wound healing. In vitro PEMF treatment of tendon-derived cells was shown to modulate pro-inflammatory cytokines, potentially limiting their catabolic effects. However, our understanding of the underlying cellular and molecular mechanisms remains limited. We therefore investigated the transcriptome-wide responses of Il-1β-primed rat Achilles tendon cell-derived 3D tendon-like constructs to high-energy PEMF treatment. RNASeq analysis and gene ontology assignment revealed various biological processes to be affected by PEMF, including extracellular matrix remodeling and negative regulation of apoptosis. Further, we show that members of the cytoprotective Il-6/gp130 family and the Il-1β decoy receptor Il1r2 are positively regulated upon PEMF exposure. In conclusion, our results provide fundamental mechanistic insight into the cellular and molecular mode of action of PEMF on tendon cells and can help to optimize treatment protocols for the non-invasive therapy of tendinopathies

    VEGF-D-mediated signaling in tendon cells is involved in degenerative processes

    No full text
    Vascular endothelial growth factor (VEGF) signaling is crucial for a large variety of cellular processes, not only related to angiogenesis but also in nonvascular cell types. We have previously shown that controlling angiogenesis by reducing VEGF-A signaling positively affects tendon healing. We now hypothesize that VEGF signaling in non-endothelial cells may contribute to tendon pathologies. By immunohistochemistry we show that VEGFR1, VEGFR2, and VEGFR3 are expressed in murine and human tendon cells in vivo. In a rat Achilles tendon defect model we show that VEGFR1, VEGFR3, and VEGF-D expression are increased after injury. On cultured rat tendon cells we show that VEGF-D stimulates cell proliferation in a dose-dependent manner; the specific VEGFR3 inhibitor SAR131675 reduces cell proliferation and cell migration. Furthermore, activation of VEGFR2 and -3 in tendon-derived cells affects the expression of mRNAs encoding extracellular matrix and matrix remodeling proteins. Using explant model systems, we provide evidence, that VEGFR3 inhibition prevents biomechanical deterioration in rat tail tendon fascicles cultured without load and attenuates matrix damage if exposed to dynamic overload in a bioreactor system. Together, these results suggest a strong role of tendon cell VEGF signaling in mediation of degenerative processes. These findings give novel insight into tendon cell biology and may pave the way for novel treatment options for degenerative tendon diseases

    Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries

    Full text link
    Tendons and tendon interfaces have a very limited regenerative capacity, rendering their injuries clinically challenging to resolve. Tendons sense muscle-mediated load; however, our knowledge on how loading affects tendon structure and functional adaption remains fragmentary. Here, we provide evidence that the matricellular protein secreted protein acidic and rich in cysteine (SPARC) is critically involved in the mechanobiology of tendons and is required for tissue maturation, homeostasis, and enthesis development. We show that tendon loading at the early postnatal stage leads to tissue hypotrophy and impaired maturation of Achilles tendon enthesis in Sparc−/− mice. Treadmill training revealed a higher prevalence of spontaneous tendon ruptures and a net catabolic adaptation in Sparc−/− mice. Tendon hypoplasia was attenuated in Sparc−/− mice in response to muscle unloading with botulinum toxin A. In vitro culture of Sparc−/− three-dimensional tendon constructs showed load-dependent impairment of ribosomal S6 kinase activation, resulting in reduced type I collagen synthesis. Further, functional calcium imaging revealed that lower stresses were required to trigger mechanically induced responses in Sparc−/− tendon fascicles. To underscore the clinical relevance of the findings, we further demonstrate that a missense mutation (p.Cys130Gln) in the follistatin-like domain of SPARC, which causes impaired protein secretion and type I collagen fibrillogenesis, is associated with tendon and ligament injuries in patients. Together, our results demonstrate that SPARC is a key extracellular matrix protein essential for load-induced tendon tissue maturation and homeostasis
    corecore