1 research outputs found

    Bacterial adhesion characteristics on implant materials for intervertebral cages: titanium or PEEK for spinal infections?

    No full text
    Purpose!#!Surgical intervention with intercorporal stabilisation in spinal infections is increasingly needed. Our aim was to compare titanium and polyetheretherketon (PEEK) cages according to their adhesion characteristics of different bacteria species in vitro.!##!Methods!#!Plates made from PEEK, polished titanium (Ti), two-surface-titanium (TiMe) (n = 2-3) and original PEEK and porous trabecular structured titanium (TiLi) interbody cages (n = 4) were inoculated in different bacterial solutions, S.aureus (MSSA, MRSA), S.epidermidis and E.coli. Growth characteristics were analysed. Biofilms and bacteria were visualised using confocal- and electron microscopy.!##!Results!#!Quantitative adherence of MSSA, MRSA, S.epidermidis and E.coli to Ti, TiMe and PEEK plates were different, with polished titanium being mainly advantageous over PEEK and TiMe with significantly less counts of colony forming units (CFU) for MRSA after 56 h compared to TiMe and at 72 h compared to PEEK (p = 0.04 and p = 0.005). For MSSA, more adherent bacteria were detected on PEEK than on TiMe at 32 h (p = 0.02). For PEEK and TiLi cages, significant differences were found after 8 and 72 h for S.epidermidis (p = 0.02 and p = 0.008) and after 72 h for MSSA (p = 0.002) with higher bacterial counts on PEEK, whereas E.coli showed more CFU on TiLi than PEEK (p = 0.05). Electron microscopy demonstrated enhanced adhesion in transition areas.!##!Conclusion!#!For S.epidermidis, MSSA and MRSA PEEK cages showed a higher adherence in terms of CFU count, whereas for E.coli PEEK seemed to be advantageous. Electron microscopic visualisation shows that bacteria did not adhere at the titanium mesh structure, but at the border zones of polished material to rougher parts
    corecore