279 research outputs found

    The effect of skin passing on the material behavior of metal strip in pure bending and tension

    Full text link
    The metal strip used in roll forming has often been preprocessed by (tension or roller) leveling or by skin-pass rolling, and as a consequence, may contain residual stresses. These stresses are not well observed by the tensile test, but could have a significant effect on the bending and springback behavior. With the advent of improved process design techniques for roll forming, including advanced finite element techniques, the need for precise material property data has become important. The major deformation mode of roll forming is that of bending combined with unloading and reverse bending, and hence property data derived from bend tests could be more relevant than that from tensile testing. This work presents a numerical study on the effect of skin passing on the material behavior of stainless steel strip in pure bending and tension. A two dimensional (2-D) numerical model was developed using Abaqus Explicit to analyze the affect of skin passing on the residual stress profile across a section for various working conditions. The deformed meshes and their final stress fields were then imported as pre-defined fields into Abaqus Standard, and the post-skin passing material behavior in pure bending was determined. The results show that a residual stress profile is introduced into the steel strip during skin passing, and that its shape and stress level depend on the overall thickness reduction as well as the number of rolling passes used in the skin passing process. The material behavior in bending and the amount of springback changed significantly depending on the skin pass condition

    Women\u27s Wage Gap Around the World

    Get PDF
    We compared the gender gap between the regions of North America, Europe, Latin American and the Caribbean, East Asia and the Pacific, Sub-Saharan Africa, Middle East and North Africa and lastly South Asia.https://digitalcommons.butler.edu/spring_2023/1010/thumbnail.jp

    Quantum Tests of the Foundations of General Relativity

    Get PDF
    The role of the equivalence principle in the context of non-relativistic quantum mechanics and matter wave interferometry, especially atom beam interferometry, will be discussed. A generalised form of the weak equivalence principle which is capable of covering quantum phenomena too, will be proposed. It is shown that this generalised equivalence principle is valid for matter wave interferometry and for the dynamics of expectation values. In addition, the use of this equivalence principle makes it possible to determine the structure of the interaction of quantum systems with gravitational and inertial fields. It is also shown that the path of the mean value of the position operator in the case of gravitational interaction does fulfill this generalised equivalence principle.Comment: Classical and Quantum Gravity 15, 13 (1998

    A geometric morphometric relationship predicts stone flake shape and size variability

    Get PDF
    The archaeological record represents a window onto the complex relationship between stone artefact variance and hominin behaviour. Differences in the shapes and sizes of stone flakes-the most abundant remains of past behaviours for much of human evolutionary history-may be underpinned by variation in a range of different environmental and behavioural factors. Controlled flake production experiments have drawn inferences between flake platform preparation behaviours, which have thus far been approximated by linear measurements, and different aspects of overall stone flake variability (Dibble and Rezek J Archaeol Sci 36:1945-1954, 2009; Lin et al. Am Antiq 724-745, 2013; Magnani et al. J Archaeol Sci 46:37-49, 2014; Rezek et al. J Archaeol Sci 38:1346-1359, 2011). However, when the results are applied to archaeological assemblages, there remains a substantial amount of unexplained variability. It is unclear whether this disparity between explanatory models and archaeological data is a result of measurement error on certain key variables, whether traditional analyses are somehow a general limiting factor, or whether there are additional flake shape and size drivers that remain unaccounted for. To try and circumvent these issues, here, we describe a shape analysis approach to assessing stone flake variability including a newly developed three-dimensional geometric morphometric method (\u273DGM\u27). We use 3DGM to demonstrate that a relationship between platform and flake body governs flake shape and size variability. Contingently, we show that by using this 3DGM approach, we can use flake platform attributes to both (1) make fairly accurate stone flake size predictions and (2) make relatively detailed predictions of stone flake shape. Whether conscious or instinctive, an understanding of this geometric relationship would have been critical to past knappers effectively controlling the production of desired stone flakes. However, despite being able to holistically and accurately incorporate three-dimensional flake variance into our analyses, the behavioural drivers of this variance remain elusive

    LETSGO: A spacecraft-based mission to accurately measure the solar angular momentum with frame-dragging

    Full text link
    LETSGO (LEnse-Thirring Sun-Geo Orbiter) is a proposed space-based mission involving the use of a spacecraft moving along a highly eccentric heliocentric orbit perpendicular to the ecliptic. It aims to accurately measure some important physical properties of the Sun and to test some post-Newtonian features of its gravitational field by continuously monitoring the Earth-probe range. Preliminary sensitivity analyses show that, by assuming a cm-level accuracy in ranging to the spacecraft, it would be possible to detect, in principle, the Lense-Thirring effect on it at a 10^-3-10^-4 level over a timescale of 2 yr, while the larger Schwarzschild component of the solar gravitational field may be sensed with a relative accuracy of about 10^-8-10^-9 during the same temporal interval. The competing range perturbation due to the non-sphericity of the Sun would be a source of systematic error, but it turns out that all the three dynamical features of motion examined affect the Earth-probe range in different ways, allowing for a separation in data analyses. The high eccentricity would help in reducing the impact of the non-gravitational perturbations whose impact would certainly be severe when LETSGO would approach the Sun at just a few solar radii. Further studies should be devoted to investigate both the consequences of the non-conservative forces and the actual measurability of the effects of interest by means of extensive numerical data simulations, parameter estimations and covariance analyses. Also an alternative, fly-by configuration is worth of consideration.Comment: LaTex2e, double column, 19 pages, 3 figures, 3 tables, 97 references. Accepted for publication in Acta Astronautica. Proof corrections inserte

    Introducing platform surface interior angle (PSIA) and its role in flake formation, size and shape

    Get PDF
    Four ways archaeologists have tried to gain insights into how flintknapping creates lithic variability are fracture mechanics, controlled experimentation, replication and attribute studies of lithic assemblages. Fracture mechanics has the advantage of drawing more directly on first principles derived from physics and material sciences, but its relevance to controlled experimentation, replication and lithic studies more generally has been limited. Controlled experiments have the advantage of being able to isolate and quantify the contribution of individual variables to knapping outcomes, and the results of these experiments have provided models of flake formation that when applied to the archaeological record of flintknapping have provided insights into past behavior. Here we develop a linkage between fracture mechanics and the results of previous controlled experiments to increase their combined explanatory and predictive power. We do this by documenting the influence of Herztian cone formation, a constant in fracture mechanics, on flake platforms. We find that the platform width is a function of the Hertzian cone constant angle and the geometry of the platform edge. This finding strengthens the foundation of one of the more influential models emerging from the controlled experiments. With additional work, this should make it possible to merge more of the experimental results into a more comprehensive model of flake formation

    Absence of the Fifth Force Problem in a Model with Spontaneously Broken Dilatation Symmetry

    Full text link
    A scale invariant model containing dilaton ϕ\phi and dust (as a model of matter) is studied where the shift symmetry ϕϕ+const.\phi\to\phi +const. is spontaneously broken at the classical level due to intrinsic features of the model. The dilaton to matter coupling "constant" ff appears to be dependent of the matter density. In normal conditions, i.e. when the matter energy density is many orders of magnitude larger than the dilaton contribution to the dark energy density, ff becomes less than the ratio of the "mass of the vacuum" in the volume occupied by the matter to the Planck mass. The model yields this kind of "Archimedes law" without any especial (intended for this) choice of the underlying action and without fine tuning of the parameters. The model not only explains why all attempts to discover a scalar force correction to Newtonian gravity were unsuccessful so far but also predicts that in the near future there is no chance to detect such corrections in the astronomical measurements as well as in the specially designed fifth force experiments on intermediate, short (like millimeter) and even ultrashort (a few nanometer) ranges. This prediction is alternative to predictions of other known models.Comment: 23 pages, some explanations expanded, misprints corrected, reference adde

    Testing alternative theories of gravity using the Sun

    Full text link
    We propose a new approach to test possible corrections to Newtonian gravity using solar physics. The high accuracy of current solar models and new precise observations allow one to constrain corrections to standard gravity at unprecedented levels. Our case study is Eddington-inspired gravity, an attractive modified theory of gravity which results in non-singular cosmology and collapse. The theory is equivalent to standard gravity in vacuum, but it sensibly differs from it within matter, for instance it affects the evolution and the equilibrium structure of the Sun, giving different core temperature profiles, deviations in the observed acoustic modes and in solar neutrino fluxes. Comparing the predictions from a modified solar model with observations, we constrain the coupling parameter of the theory, |kappa_g| < 3x10^5 m^5 s^2 / kg. Our results show that the Sun can be used to efficiently constraint alternative theories of gravity.Comment: 6 pages, 5 figures. v2: solar model improved, version to be published in Ap

    The impact of concomitant chronic total occlusion on clinical outcomes in patients undergoing transcatheter aortic valve replacement: a large single-center analysis

    Get PDF
    BackgroundCoronary artery disease (CAD) is a common finding in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement (TAVR). However, the impact on prognosis of chronic total occlusions (CTOs), a drastic expression of CAD, remains unclear.Methods and resultsWe retrospectively reviewed 1,487 consecutive TAVR cases performed at a single tertiary care medical center. Pre-TAVR angiograms were analyzed for the presence of a CTO. At the time of TAVR, 11.2% (n = 167) patients had a CTO. There was no significant association between the presence of a CTO and in-hospital or 30-day mortality. There was also no difference in long-term survival. LV ejection fraction and mean aortic gradients were lower in the CTO group.ConclusionsOur analysis suggests that concomitant CTO lesions in patients undergoing TAVR differ in their risk profile and clinical findings to patients without CTO. CTO lesion per se were not associated with increased mortality, nevertheless CTOs which supply non-viable myocardium in TAVR population were associated with increased risk of death. Additional research is needed to evaluate the prognostic significance of CTO lesions in TAVR patients

    The detection of Gravitational Waves

    Get PDF
    This chapter is concerned with the question: how do gravitational waves (GWs) interact with their detectors? It is intended to be a theory review of the fundamental concepts involved in interferometric and acoustic (Weber bar) GW antennas. In particular, the type of signal the GW deposits in the detector in each case will be assessed, as well as its intensity and deconvolution. Brief reference will also be made to detector sensitivity characterisation, including very summary data on current state of the art GW detectors.Comment: 33 pages, 12 figures, LaTeX2e, Springer style files --included. For Proceedings of the ERE-2001 Conference (Madrid, September 2001
    corecore