591 research outputs found
Driven Spin Systems as Quantum Thermodynamic Machines: Fundamental Limits
We show that coupled two level systems like qubits studied in quantum
information can be used as a thermodynamic machine. At least three qubits or
spins are necessary and arranged in a chain. The system is interfaced between
two split baths and the working spin in the middle is externally driven. The
machine performs Carnot-type cycles and is able to work as heat pump or engine
depending on the temperature difference of the baths and the energy
differences in the spin system . It can be shown that the efficiency
is a function of and .Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
Global and local relaxation of a spin-chain under exact Schroedinger and master-equation dynamics
We solve the Schroedinger equation for an interacting spin-chain locally
coupled to a quantum environment with a specific degeneracy structure. The
reduced dynamics of the whole spin-chain as well as of single spins is
analyzed. We show, that the total spin-chain relaxes to a thermal equilibrium
state independently of the internal interaction strength. In contrast, the
asymptotic states of each individual spin are thermal for weak but non-thermal
for stronger spin-spin coupling. The transition between both scenarios is found
for couplings of the order of , with denoting
the Zeeman-splitting. We compare these results with a master equation
treatment; when time averaged, both approaches lead to the same asymptotic
state and finally with analytical results.Comment: RevTeX, 8 pages, 14 figures, added DOI and forgotten reference
Real-Time-RG Analysis of the Dynamics of the Spin-Boson Model
Using a real-time renormalization group method we determine the complete
dynamics of the spin-boson model with ohmic dissipation for coupling strengths
. We calculate the relaxation and dephasing time, the
static susceptibility and correlation functions. Our results are consistent
with quantum Monte Carlo simulations and the Shiba relation. We present for the
first time reliable results for finite cutoff and finite bias in a regime where
perturbation theory in or in tunneling breaks down. Furthermore, an
unambigious comparism to results from the Kondo model is achieved.Comment: 4 pages, 5 figures, 1 tabl
Indirect protein quantification of drug-transforming enzymes using peptide group-specific immunoaffinity enrichment and mass spectrometry
Immunoaffinity enrichment of proteotypic peptides, coupled with selected reaction monitoring, enables indirect protein quantification. However the lack of suitable antibodies limits its widespread application. We developed a method in which multi-specific antibodies are used to enrich groups of peptides, thus facilitating multiplexed quantitative protein assays. We tested this strategy in a pharmacokinetic experiment by targeting a group of homologous drug transforming proteins in human hepatocytes. Our results indicate the generic applicability of this method to any biological system
Indirect protein quantification of drug-transforming enzymes using peptide group-specific immunoaffinity enrichment and mass spectrometry
Immunoaffinity enrichment of proteotypic peptides, coupled with selected reaction monitoring, enables indirect protein quantification. However the lack of suitable antibodies limits its widespread application. We developed a method in which multi-specific antibodies are used to enrich groups of peptides, thus facilitating multiplexed quantitative protein assays. We tested this strategy in a pharmacokinetic experiment by targeting a group of homologous drug transforming proteins in human hepatocytes. Our results indicate the generic applicability of this method to any biological system
New Class of Eigenstates in Generic Hamiltonian Systems
In mixed systems, besides regular and chaotic states, there are states
supported by the chaotic region mainly living in the vicinity of the hierarchy
of regular islands. We show that the fraction of these hierarchical states
scales as and relate the exponent to the
decay of the classical staying probability . This is
numerically confirmed for the kicked rotor by studying the influence of
hierarchical states on eigenfunction and level statistics.Comment: 4 pages, 3 figures, Phys. Rev. Lett., to appea
Candidate Gene Sequencing of SLC11A2 and TMPRSS6 in a Family with Severe Anaemia: Common SNPs, Rare Haplotypes, No Causative Mutation
Contains fulltext :
110476.pdf (publisher's version ) (Open Access)BACKGROUND: Iron-refractory iron deficiency anaemia (IRIDA) is a rare disorder which was linked to mutations in two genes (SLC11A2 and TMPRSS6). Common polymorphisms within these genes were associated with serum iron levels. We identified a family of Serbian origin with asymptomatic non-consanguineous parents with three of four children presenting with IRIDA not responding to oral but to intravenous iron supplementation. After excluding all known causes responsible for iron deficiency anaemia we searched for mutations in SLC11A2 and TMPRSS6 that could explain the severe anaemia in these children. METHODOLOGY/RESULTS: We sequenced the exons and exon-intron boundaries of SLC11A2 and TMPRSS6 in all six family members. Thereby, we found seven known and fairly common SNPs, but no new mutation. We then genotyped these seven SNPs in the population-based SAPHIR study (n = 1,726) and performed genetic association analysis on iron and ferritin levels. Only two SNPs, which were top-hits from recent GWAS on iron and ferritin, exhibited an effect on iron and ferritin levels in SAPHIR. Six SAPHIR participants carrying the same TMPRSS6 genotypes and haplotype-pairs as one anaemic son showed lower ferritin and iron levels than the average. One individual exhibiting the joint SLC11A2/TMPRSS6 profile of the anaemic son had iron and ferritin levels lying below the 5(th) percentile of the population's iron and ferritin level distribution. We then checked the genotype constellations in the Nijmegen Biomedical Study (n = 1,832), but the profile of the anaemic son did not occur in this population. CONCLUSIONS: We cannot exclude a gene-gene interaction between SLC11A2 and TMPRSS6, but we can also not confirm it. As in this case candidate gene sequencing did not reveal causative rare mutations, the samples will be subjected to whole exome sequencing
Graphene transistors are insensitive to pH changes in solution
We observe very small gate-voltage shifts in the transfer characteristic of
as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer
is changed. This observation is in strong contrast to Si-based ion-sensitive
FETs. The low gate-shift of a GFET can be further reduced if the graphene
surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide
layer is applied instead, the opposite happens. This suggests that clean
graphene does not sense the chemical potential of protons. A GFET can therefore
be used as a reference electrode in an aqueous electrolyte. Our finding sheds
light on the large variety of pH-induced gate shifts that have been published
for GFETs in the recent literature
Zero-point fluctuations in the ground state of a mesoscopic normal ring
We investigate the persistent current of a ring with an in-line quantum dot
capacitively coupled to an external circuit. Of special interest is the
magnitude of the persistent current as a function of the external impedance in
the zero temperature limit when the only fluctuations in the external circuit
are zero-point fluctuations. These are time-dependent fluctuations which
polarize the ring-dot structure and we discuss in detail the contribution of
displacement currents to the persistent current. We have earlier discussed an
exact solution for the persistent current and its fluctuations based on a Bethe
ansatz. In this work, we emphasize a physically more intuitive approach using a
Langevin description of the external circuit. This approach is limited to weak
coupling between the ring and the external circuit. We show that the zero
temperature persistent current obtained in this approach is consistent with the
persistent current calculated from a Bethe ansatz solution. In the absence of
coupling our system is a two level system consisting of the ground state and
the first excited state. In the presence of coupling we investigate the
projection of the actual state on the ground state and the first exited state
of the decoupled ring. With each of these projections we can associate a phase
diffusion time. In the zero temperature limit we find that the phase diffusion
time of the excited state projection saturates, whereas the phase diffusion
time of the ground state projection diverges.Comment: 12 pages, 5 figure
Comparative assessment of clinical rating scales in Wilsonâs disease
Background: Wilsonâs disease (WD) is an autosomal recessive disorder of copper metabolism resulting in multifaceted neurological, hepatic, and psychiatric symptoms. The objective of the study was to comparatively assess two clinical rating scales for WD, the Unified Wilsonâs Disease Rating Scale (UWDRS) and the Global Assessment Scale for Wilsonâs disease (GAS for WD), and to test the feasibility of the patient reported part of the UWDRS neurological subscale (termed the âminimal UWDRSâ). Methods: In this prospective, monocentric, cross-sectional study, 65 patients (median age 35 [range: 15â62] years; 33 female, 32 male) with treated WD were scored according to the two rating scales. Results: The UWDRS neurological subscore correlated with the GAS for WD Tier 2 score (r = 0.80; p < 0.001). Correlations of the UWDRS hepatic subscore and the GAS for WD Tier 1 score with both the Model for End Stage Liver Disease (MELD) score (r = 0.44/r = 0.28; p < 0.001/p = 0.027) and the Child-Pugh score (r = 0.32/r = 0.12; p = 0.015/p = 0.376) were weak. The âminimal UWDRSâ score significantly correlated with the UWDRS total score (r = 0.86), the UWDRS neurological subscore (r = 0.89), and the GAS for WD Tier 2 score (r = 0.86). Conclusions: The UWDRS neurological and psychiatric subscales and the GAS for WD Tier 2 score are valuable tools for the clinical assessment of WD patients. The âminimal UWDRSâ is a practical prescreening tool outside scientific trials
- âŠ