78 research outputs found

    Pushing for answers: is myosin V directly involved in moving mitochondria?

    Get PDF
    In budding yeast, the actin-based class V myosin motors, Myo2 and Myo4, transport virtually all organelles from mother to bud during cell division. Until recently, it appeared that mitochondria may be an exception, with studies showing that the Arp2/3 complex is required for their movement. However, several recent studies have proposed that Myo2 has a direct involvement in mitochondria inheritance. In this issue, Altmann et al. (Altmann, K., M. Frank, D. Neumann, S. Jakobs, and B. Westermann. 2008. J. Cell Biol. 181:119–130) provide the strongest support yet that Myo2 and its associated light chain Mlc1 function directly and significantly in both mitochondria–actin interactions and in the movement of mitochondria from mother to bud. The conflicting functions of Arp 2/3 and Myo2 may be reconciled by the existence of multiple pathways involved in mitochondrial transport

    The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover

    Get PDF
    Phosphoinositide-signaling lipids function in diverse cellular pathways. Dynamic changes in the levels of these signaling lipids regulate multiple processes. In particular, when Saccharomyces cerevisiae cells are exposed to hyperosmotic shock, PI3,5P2 (phosphatidylinositol [PI] 3,5-bisphosphate) levels transiently increase 20-fold. This causes the vacuole to undergo multiple acute changes. Control of PI3,5P2 levels occurs through regulation of both its synthesis and turnover. Synthesis is catalyzed by the PI3P 5-kinase Fab1p, and turnover is catalyzed by the PI3,5P2 5-phosphatase Fig4p. In this study, we show that two putative Fab1p activators, Vac7p and Vac14p, independently regulate Fab1p activity. Although Vac7p only regulates Fab1p, surprisingly, we find that Vac14 regulates both Fab1p and Fig4p. Moreover, Fig4p itself functions in both PI3,5P2 synthesis and turnover. In both the absence and presence of Vac7p, the Vac14p–Fig4p complex controls the hyperosmotic shock–induced increase in PI3,5P2 levels. These findings suggest that the dynamic changes in PI3,5P2 are controlled through a tight coupling of synthesis and turnover

    The activation cycle of Rab GTPase Ypt32 reveals structural determinants of effector recruitment and GDI binding

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116366/1/feb2s0014579311007538-sup-m0005.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/116366/2/feb2s0014579311007538.pd

    Yeast homotypic vacuole fusion requires the Ccz1–Mon1 complex during the tethering/docking stage

    Get PDF
    The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to the tethering/docking stage. Ccz1 and Mon1 form a stable protein complex that binds the vacuole membrane. In the absence of the Ccz1–Mon1 complex, the integrity of vacuole SNARE pairing and the unpaired SNARE class C Vps/HOPS complex interaction were both impaired. The Ccz1–Mon1 complex colocalized with other fusion components on the vacuole as part of the cis-SNARE complex, and the association of the Ccz1–Mon1 complex with the vacuole appeared to be regulated by the class C Vps/HOPS complex proteins. Accordingly, we propose that the Ccz1–Mon1 complex is critical for the Ypt7-dependent tethering/docking stage leading to the formation of a trans-SNARE complex and subsequent vacuole fusion

    Identification of an organelle-specific myosin V receptor

    Get PDF
    Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharomyces cerevisiae myosin V. Vac17p interacts with the Myo2p cargo-binding domain, but not with vacuole inheritance-defective myo2 mutants that have single amino acid changes within this region. Moreover, a region of the Myo2p tail required specifically for secretory vesicle transport is neither required for vacuole inheritance nor for Vac17p–Myo2p interactions. Vac17p is localized on the vacuole membrane, and vacuole-associated Myo2p increases in proportion with an increase in Vac17p. Furthermore, Vac17p is not required for movement of other cargo moved by Myo2p. These findings demonstrate that Vac17p is a component of a vacuole-specific receptor for Myo2p. Organelle-specific receptors such as Vac17p provide a mechanism whereby a single type of myosin V can move diverse cargoes to distinct destinations at different times

    Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P 2 and PI(5)P

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/1/embj2012200.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/2/embj2012200-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/3/embj2012200-reviewer_comments.pd
    corecore