19 research outputs found

    Borrowed alleles and convergence in serpentine adaptation

    Get PDF
    ACKNOWLEDGMENTS. We thank members of the L.Y. and K.B. laboratories for helpful discussions. This work was supported through the European Research Council Grant StG CA629F04E (to L.Y.); a Harvard University Milton Fund Award (to K.B.); Ruth L. Kirschstein National Research Service Award 1 F32 GM096699 from the NIH (to L.Y.); National Science Foundation Grant IOS-1146465 (to K.B.); NIH National Institute of General Medical Sciences Grant 2R01GM078536 (to D.E.S.); and Biotechnology and Biological Sciences Research Council Grant BB/L000113/1 (to D.E.S.)Peer reviewedPublisher PD

    Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa

    Get PDF
    Ploidy-variable species allow direct inference of the effects of chromosome copy number on fundamental evolutionary processes. While an abundance of theoretical work suggests polyploidy should leave distinct population genomic signatures, empirical data remains sparse. We sequenced ~300 individuals from 39 populations of Arabidopsis arenosa, a naturally diploid-autotetraploid species. We find the impacts of polyploidy on population genomic processes are subtle yet pervasive, including reduced efficiency of purifying selection, differences in linked selection, and rampant gene flow from diploids. Initial masking of deleterious mutations, faster rates of nucleotide substitution, and interploidy introgression likely conspire to shape the evolutionary potential of polyploids

    Rituximab as therapy to induce remission after relapse in ANCA-associated vasculitis

    Get PDF
    Funder: Research Committee on Intractable Vasculitides; The Ministry of Health, Labour and Welfare of Japan.Objectives: Evaluation of rituximab and glucocorticoids as therapy to induce remission after relapse in ANCA-associated vasculitis (AAV) in a prospective observational cohort of patients enrolled into the induction phase of the RITAZAREM trial. Methods: Patients relapsing with granulomatosis with polyangiitis or microscopic polyangiitis were prospectively enrolled and received remission-induction therapy with rituximab (4×375 mg/m2) and a higher or lower dose glucocorticoid regimen, depending on physician choice: reducing from either 1 mg/kg/day or 0.5 mg/kg/day to 10 mg/day by 4 months. Patients in this cohort achieving remission were subsequently randomised to receive one of two regimens to prevent relapse. Results: 188 patients were studied: 95/188 (51%) men, median age 59 years (range 19–89), prior disease duration 5.0 years (range 0.4–34.5). 149/188 (79%) had previously received cyclophosphamide and 67/188 (36%) rituximab. 119/188 (63%) of relapses had at least one major disease activity item, and 54/188 (29%) received the higher dose glucocorticoid regimen. 171/188 (90%) patients achieved remission by 4 months. Only six patients (3.2% of the study population) did not achieve disease control at month 4. Four patients died in the induction phase due to pneumonia (2), cerebrovascular accident (1), and active vasculitis (1). 41 severe adverse events occurred in 27 patients, including 13 severe infections. Conclusions: This large prospective cohort of patients with relapsing AAV treated with rituximab in conjunction with glucocorticoids demonstrated a high level of efficacy for the reinduction of remission in patients with AAV who have relapsed, with a similar safety profile to previous studies

    The permissive binding theory of cancer

    No full text
    The later stages of cancer, including the invasion and colonization of new tissues, are actively mysterious compared to earlier stages like primary tumor formation. While we lack many details about both, we do have an apparently successful explanatory framework for the earlier stages: one in which genetic mutations hold ultimate causal and explanatory power. By contrast, on both empirical and conceptual grounds, it is not currently clear that mutations alone can explain the later stages of cancer. Can a different type of molecular change do better? Here, I introduce the “permissive binding theory” of cancer, which proposes that novel protein binding interactions are the key causal and explanatory entity in invasion and metastasis. It posits that binding is more abundant at baseline than we observe because it is restricted in normal physiology; that any large perturbation to physiological state revives this baseline abundance, unleashing many new binding interactions; and that a subset of these cause the cellular functions at the heart of oncogenesis, especially invasion and metastasis. Significant physiological perturbations occur in cancer cells in very early stages, and generally become more extreme with progression, providing interactions that continually fuel invasion and metastasis. The theory is compatible with, but not limited to, causal roles for the diverse molecular changes observed in cancer (e.g. gene expression or epigenetic changes), as these generally act causally upstream of proteins, and so may exert their effects by changing the protein binding interactions that occur in the cell. This admits the possibility that molecular changes that appear quite different may actually converge in creating the same few protein complexes, simplifying our picture of invasion and metastasis. If correct, the theory offers a concrete therapeutic strategy: targeting the key novel complexes. The theory is straightforwardly testable by large-scale identification of protein interactions in different cancers

    WormCat 2.0 defines characteristics and conservation of poorly annotated genes in Caenorhabditis elegans [preprint]

    Get PDF
    Genome-wide measurement of mRNA or protein levels provides broad data sets for biological discovery. However, subsequent computational methods are essential for uncovering the functional implications of the data as well as intuitively visualizing the findings. Current computational tools are biased toward well-described pathways, limiting their utility for novel discovery. Recently, we developed an annotation and category enrichment tool for Caenorhabditis elegans genomic data, WormCat, that provides an intuitive visualization output. Unlike GO, which excludes genes with no annotation information, WormCat 2.0 retains these genes as a special UNASSIGNED category. Here, we show that the UNASSIGNED gene category enrichment exhibits tissue-specific expression patterns and include genes with biological functions. Poorly annotated genes have previously been considered to lack homologs in closely related species. Instead, we find that around 3% of the UNASSIGNED genes have poorly characterized human orthologs. These human orthologs are themselves have little annotation information. A recently developed method that incorporates lineage relationships (abSENSE) indicates that failure of BLAST to detect homology explains the apparent lineage specificity for many UNASSIGNED genes, suggesting that a larger subset could be related to human genes. WormCat provides an annotation strategy that allows association of UNASSIGNED genes with specific phenotypes and known pathways. Our analysis indicates that the UNASSIGNED gene category contains candidates that merit further functional study which could yield insight into understudied areas of biology

    Many, but not all, lineage-specific genes can be explained by homology detection failure.

    No full text
    Genes for which homologs can be detected only in a limited group of evolutionarily related species, called "lineage-specific genes," are pervasive: Essentially every lineage has them, and they often comprise a sizable fraction of the group's total genes. Lineage-specific genes are often interpreted as "novel" genes, representing genetic novelty born anew within that lineage. Here, we develop a simple method to test an alternative null hypothesis: that lineage-specific genes do have homologs outside of the lineage that, even while evolving at a constant rate in a novelty-free manner, have merely become undetectable by search algorithms used to infer homology. We show that this null hypothesis is sufficient to explain the lack of detected homologs of a large number of lineage-specific genes in fungi and insects. However, we also find that a minority of lineage-specific genes in both clades are not well explained by this novelty-free model. The method provides a simple way of identifying which lineage-specific genes call for special explanations beyond homology detection failure, highlighting them as interesting candidates for further study

    IL-16/miR-125a axis controls neutrophil recruitment in pristane-induced lung inflammation

    No full text
    Severe lung inflammation and alveolar hemorrhage can be life-threatening in systemic lupus erythematosus (SLE) patients if not treated early and aggressively. Neutrophil influx is the driver key of this pathology, but little is known regarding the molecular events regulating this recruitment. Here, we uncover a role for IL-16/mir-125a in this pathology and show not only that IL-16 is a target for miR-125a but that reduced miR-125a expression in SLE patients associates with lung involvement. Furthermore, in the pristane model of acute "SLE-like" lung inflammation and alveolar hemorrhage, we observed reduced pulmonary miR-125a and enhanced IL-16 expression. Neutrophil infiltration was markedly reduced in the peritoneal lavage of pristane-treated IL-16-deficient mice and elevated following i.n. delivery of IL-16. Moreover, a miR-125a mimic reduced pristane-induced IL-16 expression and neutrophil recruitment and rescued lung pathology. Mechanistically, IL-16 acts directly on the pulmonary epithelium and markedly enhances neutrophil chemoattractant expression both in vitro and in vivo, while the miR-125a mimic can prevent this. Our results reveal a role for miR-125a/IL-16 in regulating lung inflammation and suggest this axis may be a therapeutic target for management of acute lung injury in SLE
    corecore