595 research outputs found

    Temperature dependence of the band gap shrinkage due to electron-phonon interaction in undoped n-type GaN

    Full text link
    The photoluminescence spectra of band-edge transitions in GaN is studied as a function of temperature. The parameters that describe the temperature dependence red-shift of the band-edge transition energy and the broadening of emission line are evaluated using different models. We find that the semi-empirical relation based on phonon-dispersion related spectral function leads to excellent fit to the experimental data. The exciton-phonon coupling constants are determined from the analysis of linewidth broadening

    Remarks on supersymmetry of quantum systems with position-dependent effective masses

    Full text link
    We apply the supersymmetry approach to one-dimensional quantum systems with spatially-dependent mass, by including their ordering ambiguities dependence. In this way we extend the results recently reported in the literature. Furthermore, we point out a connection between these systems and others with constant masses. This is done through convenient transformations in the coordinates and wavefunctions.Comment: 8 pages, 1 figur

    Effects of noise and confidence thresholds in nominal and metric Axelrod dynamics of social influence

    Full text link
    We study the effects of bounded confidence thresholds and of interaction and external noise on Axelrod's model of social influence. Our study is based on a combination of numerical simulations and an integration of the mean-field Master equation describing the system in the thermodynamic limit. We find that interaction thresholds affect the system only quantitatively, but that they do not alter the basic phase structure. The known crossover between an ordered and a disordered state in finite systems subject to external noise persists in models with general confidence threshold. Interaction noise here facilitates the dynamics and reduces relaxation times. We also study Axelrod systems with metric features, and point out similarities and differences compared to models with nominal features. Metric features are used to demonstrate that a small group of extremists can have a significant impact on the opinion dynamics of a population of Axelrod agents.Comment: 15 pages, 12 figure

    Treating some solid state problems with the Dirac equation

    Full text link
    The ambiguity involved in the definition of effective-mass Hamiltonians for nonrelativistic models is resolved using the Dirac equation. The multistep approximation is extended for relativistic cases allowing the treatment of arbitrary potential and effective-mass profiles without ordering problems. On the other hand, if the Schrodinger equation is supposed to be used, our relativistic approach demonstrate that both results are coincidents if the BenDaniel and Duke prescription for the kinetic-energy operator is implemented. Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure

    Diffusing opinions in bounded confidence processes

    Get PDF
    We study the effects of diffusing opinions on the Deffuant et al. model for continuous opinion dynamics. Individuals are given the opportunity to change their opinion, with a given probability, to a randomly selected opinion inside an interval centered around the present opinion. We show that diffusion induces an order-disorder transition. In the disordered state the opinion distribution tends to be uniform, while for the ordered state a set of well defined opinion clusters are formed, although with some opinion spread inside them. If the diffusion jumps are not large, clusters coalesce, so that weak diffusion favors opinion consensus. A master equation for the process described above is presented. We find that the master equation and the Monte-Carlo simulations do not always agree due to finite-size induced fluctuations. Using a linear stability analysis we can derive approximate conditions for the transition between opinion clusters and the disordered state. The linear stability analysis is compared with Monte Carlo simulations. Novel interesting phenomena are analyzed

    How does informational heterogeneity affect the quality of forecasts?

    Full text link
    We investigate a toy model of inductive interacting agents aiming to forecast a continuous, exogenous random variable E. Private information on E is spread heterogeneously across agents. Herding turns out to be the preferred forecasting mechanism when heterogeneity is maximal. However in such conditions aggregating information efficiently is hard even in the presence of learning, as the herding ratio rises significantly above the efficient-market expectation of 1 and remarkably close to the empirically observed values. We also study how different parameters (interaction range, learning rate, cost of information and score memory) may affect this scenario and improve efficiency in the hard phase.Comment: 11 pages, 5 figures, updated version (to appear in Physica A

    Discrete Dynamical Systems Embedded in Cantor Sets

    Full text link
    While the notion of chaos is well established for dynamical systems on manifolds, it is not so for dynamical systems over discrete spaces with N N variables, as binary neural networks and cellular automata. The main difficulty is the choice of a suitable topology to study the limit N→∞N\to\infty. By embedding the discrete phase space into a Cantor set we provided a natural setting to define topological entropy and Lyapunov exponents through the concept of error-profile. We made explicit calculations both numerical and analytic for well known discrete dynamical models.Comment: 36 pages, 13 figures: minor text amendments in places, time running top to bottom in figures, to appear in J. Math. Phy

    Conductance distributions of 1D-disordered wires at finite temperature and bias voltage

    Full text link
    We calculate the distribution of the conductance G in a one-dimensional disordered wire at finite temperature T and bias voltage V in a independent-electron picture and assuming full coherent transport. At high enough temperature and bias voltage, where several resonances of the system contribute to the conductance, the distribution P(G(T,V)) can be represented with good accuracy by autoconvolutions of the distribution of the conductance at zero temperature and zero bias voltage. The number of convolutions depends on T and V. In the regime of very low T and V, where only one resonance is relevant to G(T,V), the conductance distribution is analyzed by a resonant tunneling conductance model. Strong effects of finite T and V on the conductance distribution are observed and well described by our theoretical analysis, as we verify by performing a number of numerical simulations of a one-dimensional disordered wire at different temperatures, voltages, and lengths of the wire. Analytical estimates for the first moments of P(G(T,V)) at high temperature and bias voltage are also provided.Comment: 9 pages, 7 figures, Submitted to PR
    • …
    corecore