34 research outputs found

    Towards Safer-SIP - Effect of formamide on the separation of isotope-labeled and unlabeled Escherichia coli RNA by isopycnic density ultracentrifugation

    No full text
    RNA-based stable isotope probing (RNA-SIP) is used in molecular microbial ecology to link the identity of microorganisms in a complex community with the assimilation of a distinct substrate. The technique is highly dependent on a reliable separation of isotopic-labeled RNA from unlabeled RNA by isopycnic density gradient ultracentrifugation. Here we show that 13C-labeled and unlabeled Escherichia coli RNA can be sufficiently separated by isopycnic ultracentrifugation even in the absence of formamide. However, a slightly lower starting density is needed to obtain a distribution pattern similar to that obtained when formamide was used. Hence, the commonly used addition of formamide to the centrifugation solution might not be needed to separate 13C-labeled RNA from unlabeled RNA, but this must be verified for more complex environmental mixtures of RNA. Clearly, an omission of formamide would increase the safety of RNA-SIP analyses.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Minority report: small-scale metagenomic analysis of the non-bacterial kitchen sponge microbiota

    No full text
    Kitchen sponges are particularly well known to harbor a high number and diversity of bacteria, including pathogens. Viruses, archaea, and eukaryotes in kitchen sponges, however, have not been examined in detail so far. To increase knowledge on the non-bacterial kitchen sponge microbiota and its potential hygienic relevance, we investigated five used kitchen sponges by means of metagenomic shot-gun sequencing. Viral particles were sought to be enriched by a filter step during DNA extraction from the sponges. Data analysis revealed that ~ 2% of the sequences could be assigned to non-bacterial taxa. Each sponge harbored different virus (phage) species, while the present archaea were predominantly affiliated with halophilic taxa. Among the eukaryotic taxa, besides harmless algae, or amoebas, mainly DNA from food-left-overs was found. The presented work offers new insights into the complex microbiota of used kitchen sponges and contributes to a better understanding of their hygienic relevance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00203-022-02969-9
    corecore