127 research outputs found

    Structure formation in binary colloids

    Full text link
    A theoretical study of the structure formation observed very recently [Phys. Rev. Lett. 90, 128303 (2003)] in binary colloids is presented. In our model solely the dipole-dipole interaction of the particles is considered, electrohidrodynamic effects are excluded. Based on molecular dynamics simulations and analytic calculations we show that the total concentration of the particles, the relative concentration and the relative dipole moment of the components determine the structure of the colloid. At low concentrations the kinetic aggregation of particles results in fractal structures which show a crossover behavior when increasing the concentration. At high concentration various lattice structures are obtained in a good agreement with experiments.Comment: revtex, 4 pages, figures available from authors due to size problem

    Two-dimensional array of magnetic particles: The role of an interaction cutoff

    Full text link
    Based on theoretical results and simulations, in two-dimensional arrangements of a dense dipolar particle system, there are two relevant local dipole arrangements: (1) a ferromagnetic state with dipoles organized in a triangular lattice, and (2) an anti-ferromagnetic state with dipoles organized in a square lattice. In order to accelerate simulation algorithms we search for the possibility of cutting off the interaction potential. Simulations on a dipolar two-line system lead to the observation that the ferromagnetic state is much more sensitive to the interaction cutoff RR than the corresponding anti-ferromagnetic state. For R8R \gtrsim 8 (measured in particle diameters) there is no substantial change in the energetical balance of the ferromagnetic and anti-ferromagnetic state and the ferromagnetic state slightly dominates over the anti-ferromagnetic state, while the situation is changed rapidly for lower interaction cutoff values, leading to the disappearance of the ferromagnetic ground state. We studied the effect of bending ferromagnetic and anti-ferromagnetic two-line systems and we observed that the cutoff has a major impact on the energetical balance of the ferromagnetic and anti-ferromagnetic state for R4R \lesssim 4. Based on our results we argue that R5R \approx 5 is a reasonable choice for dipole-dipole interaction cutoff in two-dimensional dipolar hard sphere systems, if one is interested in local ordering.Comment: 8 page

    A molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids

    Full text link
    We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferro-solids the observed susceptibility is considerably lowered when compared to ferrofluids.Comment: 33 pages including 12 figures, requires RevTex

    An integral equation approach to orientational phase transitions in two and three dimensional disordered systems

    Full text link
    The use of inhomogeneous Ornstein-Zernike equations to analyze phase transitions and ordered phases in magnetic systems is explored both in bulk three dimensional disordered Heisenberg systems and in a simple model for a two dimensional ferrofluid monolayer. In addition to closures like the Mean Spherical Approximation, Hypernetted Chain and Zerah-Hansen approximation, the inhomogeneous Ornstein-Zernike equation must be complemented by a one-body closure, for which the Born-Green equation has been used in this paper. The results obtained prove that the proposed approach can furnish accurate estimates for the paramagneticferromagnetic transition in the three dimensional Heisenberg spin fluid, reproducing reliably the structure of the isotropic and ordered phases. In two dimensions, the results are fairly accurate as well, both for the dipolar film alone and in the presence of external perpendicular fields. At high densities/dipole moments the equation seems to predict a transition to a phase in which the dipoles lie mostly in the plane and are aligned into vortex-like structures. Evidence of this new phase is found in the simulation at somewhat higher couplingsВикористання неоднорідних рівнянь Орнштейна-Церніке для вивчення фазових переходів і впорядкованих фаз в магнітних системах досліджується як у невпорядкованих гайзенбергівських системах так і в простій моделі для двовимірного ферофлюїдного моношару. Неоднорідне рівняння Орнштейна-Церніке, крім таких замикань як середньосферичне, гіперланцюгове і наближення Зера-Гансена, мусить бути доповнене одно-частинковим замиканням, для якого було використано в цій статті рівняння Борна-Гріна. Отримані результати доводять, що запропонований підхід може давати точні оцінки для переходу парамагнетик-феромагнетик в тривимірному гайзенбергівському спіновому флюїді, надійно відтворюючи структуру ізотропної і впорядкованої фаз. У двох вимірах, результати є, безумовно, точними як для дипольної плівки без поля, так і в присутності зовнішніх перпендикулярно направлених полів. При високих густинах/дипольних моментах рівняння передбачають перехід до фази, в якій диполі лежать в основному в площині і утворюють вихороподібні структури. Наявність цієї нової фази є знайдена при дещо сильніших параметрах при моделюванні

    Orientational order in dipolar fluids consisting of nonspherical hard particles

    Full text link
    We investigate fluids of dipolar hard particles by a certain variant of density-functional theory. The proper treatment of the long range of the dipolar interactions yields a contribution to the free energy which favors ferromagnetic order. This corrects previous theoretical analyses. We determine phase diagrams for dipolar ellipsoids and spherocylinders as a function of the aspect ratio of the particles and their dipole moment. In the nonpolar limit the results for the phase boundary between the isotropic and nematic phase agree well with simulation data. Adding a longitudinal dipole moment favors the nematic phase. For oblate or slightly elongated particles we find a ferromagnetic liquid phase, which has also been detected in computer simulations of fluids consisting of spherical dipolar particles. The detailed structure of the phase diagram and its evolution upon changing the aspect ratio are discussed in detail.Comment: 35 pages LaTeX with epsf style, 11 figures in eps format, submitted to Phys. Rev.

    Criticality in confined ionic fluids

    Full text link
    A theory of a confined two dimensional electrolyte is presented. The positive and negative ions, interacting by a 1/r1/r potential, are constrained to move on an interface separating two solvents with dielectric constants ϵ1\epsilon_1 and ϵ2\epsilon_2. It is shown that the Debye-H\"uckel type of theory predicts that the this 2d Coulomb fluid should undergo a phase separation into a coexisting liquid (high density) and gas (low density) phases. We argue, however, that the formation of polymer-like chains of alternating positive and negative ions can prevent this phase transition from taking place.Comment: RevTex, no figures, in press Phys. Rev.

    Scaling behavior of the dipole coupling energy in two-dimensional disordered magnetic nanostructures

    Full text link
    Numerical calculations of the average dipole-coupling energy Eˉdip\bar E_\mathrm{dip} in two-dimensional disordered magnetic nanostructures are performed as function of the particle coverage CC. We observe that Eˉdip\bar E_\mathrm{dip} scales as EˉdipCα\bar E_\mathrm{dip}\propto C^{\alpha^*} with an unusually small exponent α0.8\alpha^*\simeq 0.8--1.0 for coverages C20C\lesssim20%. This behavior is shown to be primarly given by the contributions of particle pairs at short distances, which is intrinsically related to the presence of an appreciable degree of disorder. The value of α\alpha^* is found to be sensitive to the magnetic arrangement within the nanostructure and to the degree of disorder. For large coverages C20C\gtrsim20% we obtain EˉdipCα\bar E_\mathrm{dip}\propto C^\alpha with α=3/2\alpha=3/2, in agreement with the straighforward scaling of the dipole coupling as in a periodic particle setup. Taking into account the effect of single-particle anisotropies, we show that the scaling exponent can be used as a criterion to distinguish between weakly interacting (α1.0\alpha^* \simeq 1.0) and strongly interacting (α0.8\alpha^* \simeq 0.8) particle ensembles as function of coverage.Comment: accepted for publication in Phys.Rev.

    Theoretical description of phase coexistence in model C60

    Full text link
    We have investigated the phase diagram of the Girifalco model of C60 fullerene in the framework provided by the MHNC and the SCOZA liquid state theories, and by a Perturbation Theory (PT), for the free energy of the solid phase. We present an extended assessment of such theories as set against a recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys. 118:304 (2003)]. We have compared the theoretical predictions with the corresponding simulation results for several thermodynamic properties. Then we have determined the phase diagram of the model, by using either the SCOZA, or the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase, in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA results for the liquid-vapor coexistence, as well as for the corresponding critical points, are quite accurate. All results are discussed in terms of the basic assumptions underlying each theory. We have selected the MHNC for the fluid and the first-order PT for the solid phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical approaches. The overall results appear as a robust benchmark for further theoretical investigations on higher order C(n>60) fullerenes, as well as on other fullerene-related materials, whose description can be based on a modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.

    Phase diagrams of classical spin fluids: the influence of an external magnetic field on the liquid-gas transition

    Full text link
    The influence of an external magnetic field on the liquid-gas phase transition in Ising, XY, and Heisenberg spin fluid models is studied using a modified mean field theory and Gibbs ensemble Monte Carlo simulations. It is demonstrated that the theory is able to reproduce quantitatively all characteristic features of the field dependence of the critical temperature T_c(H) for all the three models. These features include a monotonic decrease of T_c with rising H in the case of the Ising fluid as well as a more complicated nonmonotonic behavior for the XY and Heisenberg models. The nonmonotonicity consists in a decrease of T_c with increasing H at weak external fields, an increase of T_c with rising H in the strong field regime, and the existence of a minimum in T_c(H) at intermediate values of H. Analytical expressions for T_c(H) in the large field limit are presented as well. The magnetic para-ferro phase transition is also considered in simulations and described within the mean field theory.Comment: 14 pages, 12 figures (to be submitted to Phys. Rev. E

    Polarization transfer in the 4^{4}He(e,ep3(\vec{e},e' \vec{p}^{3}H reaction

    Full text link
    Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2 was measured at the Mainz Microtron MAMI. The ratio of the transverse to the longitudinal polarization components of the ejected protons was compared with the same ratio for elastic ep scattering. The results are consistent with a recent fully relativistic calculation which includes a predicted medium modification of the proton form factor based on a quark-meson coupling model.Comment: 5 pages, Latex, 2 postscript figures, submitted to Physics Letters
    corecore