120 research outputs found

    Serum Peptidomics

    Get PDF

    Comorbid depressive symptoms can aggravate the functional changes of the pain matrix in patients with chronic back pain: A resting-state fMRI study

    Get PDF
    ObjectiveThe purposes of this study are to explore (1) whether comorbid depressive symptoms in patients with chronic back pain (CBP) affect the pain matrix. And (2) whether the interaction of depression and CBP exacerbates impaired brain function.MethodsThirty-two patients with CBP without comorbid depressive symptoms and thirty patients with CBP with comorbid depressive symptoms were recruited. All subjects underwent functional magnetic resonance imaging (fMRI) scans. The graph theory analysis, mediation analysis, and functional connectivity (FC) analysis were included in this study. All subjects received the detection of clinical depressive symptoms and pain-related manifestations.ResultCompared with the CBP group, subjects in the CBP with comorbid depressive symptoms (CBP-D) group had significantly increased FC in the left medial prefrontal cortex and several parietal cortical regions. The results of the graph theory analyses showed that the area under the curve of small-world property (t = −2.175, p = 0.034), gamma (t = −2.332, p = 0.023), and local efficiency (t = −2.461, p = 0.017) in the CBP-D group were significantly lower. The nodal efficiency in the ventral posterior insula (VPI) (t = −3.581, p = 0.0007), and the network efficiency values (t = −2.758, p = 0.008) in the pain matrix were significantly lower in the CBP-D group. Both the topological properties and the FC values of these brain regions were significantly correlated with self-rating depression scale (SDS) scores (all FDR corrected) but not with pain intensity. Further mediation analyses demonstrated that pain intensity had a mediating effect on the relationship between SDS scores and Pain Disability Index scores. Likewise, the SDS scores mediated the relationship between pain intensity and PDI scores.ConclusionOur study found that comorbid depressive symptoms can aggravate the impairment of pain matrix function of CBP, but this impairment cannot directly lead to the increase of pain intensity, which may be because some brain regions of the pain matrix are the common neural basis of depression and CBP

    Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is a worldwide malignant liver tumor with high incidence in China. Subchromosomal amplifications and deletions accounted for major genomic alterations occurred in HCC. Digital karyotyping was an effective method for analyzing genome-wide chromosomal aberrations at high resolution.</p> <p>Methods</p> <p>A digital karyotyping library of HCC was constructed and 454 Genome Sequencer FLX System (Roche) was applied in large scale sequencing of the library. Digital Karyotyping Data Viewer software was used to analyze genomic amplifications and deletions. Genomic amplifications of genes detected by digital karyotyping were examined by real-time quantitative PCR. The mRNA expression level of these genes in tumorous and paired nontumorous tissues was also detected by real-time quantitative RT-PCR.</p> <p>Results</p> <p>A total of 821,252 genomic tags were obtained from the digital karyotyping library of HCC, with 529,162 tags (64%) mapped to unique loci of human genome. Multiple subchromosomal amplifications and deletions were detected through analyzing the digital karyotyping data, among which the amplification of 7q21.3 drew our special attention. Validation of genes harbored within amplicons at 7q21.3 locus revealed that genomic amplification of SGCE, PEG10, DYNC1I1 and SLC25A13 occurred in 11 (21%), 11 (21%), 11 (21%) and 23 (44%) of the 52 HCC samples respectively. Furthermore, the mRNA expression level of SGCE, PEG10 and DYNC1I1 were significantly up-regulated in tumorous liver tissues compared with corresponding nontumorous counterparts.</p> <p>Conclusions</p> <p>Our results indicated that subchromosomal region of 7q21.3 was amplified in HCC, and SGCE, PEG10 and DYNC1I1 were probable protooncogenes located within the 7q21.3 locus.</p

    Ameliorated ConA-Induced Hepatitis in the Absence of PKC-theta

    Get PDF
    Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis

    Potential candidates for liver resection in liver-confined advanced HCC: a Chinese multicenter observational study

    Get PDF
    BackgroundAdvanced hepatocellular carcinoma (HCC) is characterized as symptomatic tumors [performance status (PS) score of 1-2], vascular invasion and extrahepatic spread, but patients with PS1 alone may be eliminated from this stage. Although liver resection is used for liver-confined HCC, its role in patients with PS1 alone remains controversial. Therefore, we aimed to explore its application in such patients and identify potential candidates.MethodsEligible liver-confined HCC patients undergoing liver resection were retrospectively screened in 15 Chinese tertiary hospitals, with limited tumor burden, liver function and PS scores. Cox-regression survival analysis was used to investigate the prognostic factors and develop a risk-scoring system, according to which patients were substratified using fitting curves and the predictive values of PS were explored in each stratification.ResultsFrom January 2010 to October 2021, 1535 consecutive patients were selected. In the whole cohort, PS, AFP, tumor size and albumin were correlated with survival (adjusted P&lt;0.05), based on which risk scores of every patient were calculated and ranged from 0 to 18. Fitting curve analysis demonstrated that the prognostic abilities of PS varied with risk scores and that the patients should be divided into three risk stratifications. Importantly, in the low-risk stratification, PS lost its prognostic value, and patients with PS1 alone achieved a satisfactory 5-year survival rate of 78.0%, which was comparable with that PS0 patients (84.6%).ConclusionSelected patients with PS1 alone and an ideal baseline condition may benefit from liver resection and may migrate forward to BCLC stage A

    Identify optimal HAP series scores for unresectable HCC patients undergoing TACE plus sorafenib: A Chinese multicenter observational study

    Get PDF
    BackgroundHepatoma arterial-embolization prognostic (HAP) series scores have been proposed for prognostic prediction in patients with unresectable hepatocellular carcinoma (uHCC) undergoing transarterial chemoembolization (TACE). However, their prognostic value in TACE plus sorafenib (TACE-S) remains unknown. Here, we aim to evaluate their prognostic performance in such conditions and identify the best model for this combination therapy.MethodsBetween January 2012 and December 2018, consecutive patients with uHCC receiving TACE-S were recruited from 15 tertiary hospitals in China. Cox regression analyses were used to investigate the prognostic values of baseline factors and every scoring system. Their prognostic performance and discriminatory performance were evaluated and confirmed in subgroup analyses.ResultsA total of 404 patients were enrolled. In the whole cohort, the median follow-up period was 44.2 (interquartile range (IQR), 33.2–60.7) months, the median overall survival (OS) time was 13.2 months, and 336 (83.2%) patients died at the end of the follow-up period. According to multivariate analyses, HAP series scores were independent prognostic indicators of OS. In addition, the C-index, Akaike information criterion (AIC) values, and time-dependent area under the receiver operating characteristic (ROC) curve (AUC) indicated that modified HAP (mHAP)-III had the best predictive performance. Furthermore, the results remained consistent in most subsets of patients.ConclusionHAP series scores exhibited good predictive ability in uHCC patients accepting TACE-S, and the mHAP-III score was found to be superior to the other HAP series scores in predicting OS. Future prospective high-quality studies should be conducted to confirm our results and help with treatment decision-making

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore