19 research outputs found

    Probing Voltage Sensors In Nonphospholipid Bilayers

    Get PDF

    Temporally Disentangled Representation Learning under Unknown Nonstationarity

    Full text link
    In unsupervised causal representation learning for sequential data with time-delayed latent causal influences, strong identifiability results for the disentanglement of causally-related latent variables have been established in stationary settings by leveraging temporal structure. However, in nonstationary setting, existing work only partially addressed the problem by either utilizing observed auxiliary variables (e.g., class labels and/or domain indexes) as side information or assuming simplified latent causal dynamics. Both constrain the method to a limited range of scenarios. In this study, we further explored the Markov Assumption under time-delayed causally related process in nonstationary setting and showed that under mild conditions, the independent latent components can be recovered from their nonlinear mixture up to a permutation and a component-wise transformation, without the observation of auxiliary variables. We then introduce NCTRL, a principled estimation framework, to reconstruct time-delayed latent causal variables and identify their relations from measured sequential data only. Empirical evaluations demonstrated the reliable identification of time-delayed latent causal influences, with our methodology substantially outperforming existing baselines that fail to exploit the nonstationarity adequately and then, consequently, cannot distinguish distribution shifts.Comment: NeurIPS 202

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Development Process, Quantitative Models, and Future Directions in Driving Analysis of Urban Expansion

    No full text
    Driving analysis of urban expansion (DAUE) is usually implemented to identify the driving factors and their corresponding driving effects/mechanisms for the expansion processes of urban land, aiming to provide scientific guidance for urban planning and management. Based on a thorough analysis and summarization of the development process and quantitative models, four major limitations in existing DAUE studies have been uncovered: (1) the interactions in hierarchical urban systems have not been fully explored; (2) the employed data cannot fully depict urban dynamic through finer social perspectives; (3) the employed models cannot deal with high-level feature correlations; and (4) the simulation and analysis models are still not intrinsically integrated. Four future directions are thus proposed: (1) to pay attention to the hierarchical characteristics of urban systems and conduct multi-scale research on the complex interactions within them to capture dynamic features; (2) to leverage remote sensing data so as to obtain diverse urban expansion data and assimilate multi-source spatiotemporal big data to supplement novel socio-economic driving factors; (3) to integrate with interpretable data-driven machine learning techniques to bolster the performance and reliability of DAUE models; and (4) to construct mechanism-coupled urban simulation to achieve a complementary enhancement and facilitate theory development and testing for urban land systems

    Efficiency Evaluation of Urban Road Transport and Land Use in Hunan Province of China Based on Hybrid Data Envelopment Analysis (DEA) Models

    No full text
    Urban road transport and land use (RTLU) jointly promote economic development by concentrating labor, material, and capital. This paper presents an integrated RTLU efficiency analysis that explores the degree of coordination between these two systems to provide guidance for future adaptations necessary for sustainable urban development. Both a super efficiency Data Envelopment Analysis model and window analysis were used to spatiotemporally evaluate RTLU efficiency from 2012 to 2016 in 14 cities of Hunan province, central China. The Malmquist index was decomposed into technical efficiency and technology change to reveal reasons for changes in RTLU efficiency. These evaluation results show regional disparities in efficiency across Hunan province, with western cities being the least efficient. Eight cities showed an increasing trend in RTLU efficiency while Yueyang exhibited a decreasing trend. In 13 of 14 regions, productivity improved every year. At the same time, five regions had a decline in technical efficiency even though technical progress increased in all regions. Our analysis shows that greater investment in road transport and urban construction are not enough to ensure sustainable urban growth. Policy must instead promote the full use of current resources according to local conditions to meet local, regional, and national development goals

    Fang “LMMSE frequency merging for demosaicking

    No full text
    ABSTRACT For raw images captured by most digital cameras, every pixel has only on color in R, G and B. Kinds demosaicking algorithms are proposed for interpolating the missing two colors. In this article, the relationships inter and intra color channels are analyzed, and basing on the features, we propose a method to divide raw images into sub images and merge them in frequency domain with linear combination. Optimal weights are calculated with estimation values and raw values based on minimum mean square error criteria. Experiments results with different estimations are presented and discussed

    Safety and Efficacy of High Power Shorter Duration Ablation Guided by Ablation Index or Lesion Size Index in Atrial Fibrillation Ablation: A Systematic Review and Meta-Analysis

    No full text
    Background. High power shorter duration (HPSD) ablation may lead to safe and rapid lesion formation. However, the optimal radio frequency power to achieve the desired ablation index (AI) or lesion size index (LSI) is insubstantial. This analysis aimed to appraise the clinical safety and efficacy of HPSD guided by AI or LSI (HPSD-AI or LSI) in patients with atrial fibrillation (AF). Methods. The Medline, PubMed, Embase, Web of Science, and the Cochrane Library databases from inception to November 2020 were searched for studies comparing HPSD-AI or LSI and low power longer duration (LPLD) ablation. Results. Seven trials with 1013 patients were included in the analysis. The analyses verified that HPSD-AI or LSI revealed benefits of first-pass pulmonary vein isolation (PVI) (RR: 1.28; 95% CI: 1.05–1.56, P = 0.01) and acute pulmonary vein reconnection (PVR) (RR: 0.65; 95% CI: 0.48–0.88, P = 0.005) compared with LPLD. HPSD-AI or LSI showed higher freedom from atrial tachyarrhythmia (AT) (RR = 1.32, 95% CI: 1.14–1.53, P = 0.0002) in the subgroup analysis of studies with PVI ± (with or without additional ablation beyond PVI). HPSD-AI or LSI could short procedural time (WMD: −22.81; 95% CI, −35.03 to −10.60, P = 0.0003), ablation time (WMD: −10.80; 95% CI: −13.14 to −8.46, P < .00001), and fluoroscopy time (WMD: −7.71; 95% CI: −13.71 to −1.71, P = 0.01). Major complications and esophageal lesion in HPSD-AI or LSI group were no more than LDLP group (RR: 0.58; 95% CI: 0.20–1.69, P = 0.32) and (RR: 0.84; 95% CI: 0.43–1.61, P = 0.59). Conclusions. HPSD-AI or LSI was efficient for treating AF with shorting procedural, ablation, and fluoroscopy time, higher first-pass PVI, and reducing acute PVR and may increase freedom from AT for patients with additional ablation beyond PVI compared with LPLD. Moreover, complications and esophageal lesion were low and no different between two groups
    corecore