25 research outputs found
Genome-Wide Analyses of the NAC Transcription Factor Gene Family in Pepper (\u3cem\u3eCapsicum annuum\u3c/em\u3e L.): Chromosome Location, Phylogeny, Structure, Expression Patterns, \u3cem\u3eCis\u3c/em\u3e-Elements in the Promoter, and Interaction Network
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family, which is involved in the regulation of tissue development in response to biotic and abiotic stress. To date, there have been no comprehensive studies investigating chromosomal location, gene structure, gene phylogeny, conserved motifs, or gene expression of NAC in pepper (Capsicum annuum L.). The recent release of the complete genome sequence of pepper allowed us to perform a genome-wide investigation of Capsicum annuum L. NAC (CaNAC) proteins. In the present study, a comprehensive analysis of the CaNAC gene family in pepper was performed, and a total of 104 CaNAC genes were identified. Genome mapping analysis revealed that CaNAC genes were enriched on four chromosomes (chromosomes 1, 2, 3, and 6). In addition, phylogenetic analysis of the NAC domains from pepper, potato, Arabidopsis, and rice showed that CaNAC genes could be clustered into three groups (I, II, and III). Group III, which contained 24 CaNAC genes, was exclusive to the Solanaceae plant family. Gene structure and protein motif analyses showed that these genes were relatively conserved within each subgroup. The number of introns in CaNAC genes varied from 0 to 8, with 83 (78.9%) of CaNAC genes containing two or less introns. Promoter analysis confirmed that CaNAC genes are involved in pepper growth, development, and biotic or abiotic stress responses. Further, the expression of 22 selected CaNAC genes in response to seven different biotic and abiotic stresses [salt, heat shock, drought, Phytophthora capsici, abscisic acid, salicylic acid (SA), and methyl jasmonate (MeJA)] was evaluated by quantitative RT-PCR to determine their stress-related expression patterns. Several putative stress-responsive CaNAC genes, including CaNAC72 and CaNAC27, which are orthologs of the known stress-responsive Arabidopsis gene ANAC055 and potato gene StNAC30, respectively, were highly regulated by treatment with different types of stress. Our results also showed that CaNAC36 plays an important role in the interaction network, interacting with 48 genes. Most of these genes are in the mitogen-activated protein kinase (MAPK) family. Taken together, our results provide a platform for further studies to identify the biological functions of CaNAC genes
High-precision adaptive slope compensation circuit for DC-DC converter in wearable devices
This paper presents a high precision adaptive slope compensation circuit for for DC-DC converter in wearable devices. Compared with the traditional adaptive slope compensation circuit, the comparator is used to sample the output voltage and input voltage, which greatly improves the accuracy.In this paper, the circuit is designed in UMC 0.18-μm CMOS Technology and verified by Virtuoso Spectre Circuit Simulator. The simulation results show that the accuracy of the adaptive slope compensation circuit in this paper can reach more than 96%
DEGRADATION ANALYSIS OF LITHIUM-ION BATTERIES WITH KNEE POINTS
The commercialization of lithium-ion batteries has enabled applications ranging from portable consumer devices to high-power electric vehicles to become commonplace. The capacity, which has been used to determine if lithium-ion batteries have reached the end of life, decreases during usage (cycling) and storage (rest). After some charge-discharge cycles, the capacity fade rate has been observed to increase, and the capacity fade curve visibly bends, the onset of which is described as a knee point. The occurrence of the knee point during the useful life of the battery leads a shorter life than expected based on the initial capacity fade rate.
Although various degradation mechanisms are generally known in the literature, the degradation mechanisms responsible for the knee point phenomenon have been in contention. Understanding why and when the knee point will appear on the capacity fade curves is valuable to battery manufacturers and device companies to predict or mitigate the knee point. This study presents the degradation behavior with knee point identification algorithms, experimental analysis that identifies the degradation mechanisms for the knee point, and accelerated aging tests and modeling methods to predict the capacity fade trend, including the knee point. Finally, this study discusses how to delay the knee point from chemical design perspectives and how battery users should qualify batterie
Development of an Informative Lithium-Ion Battery Datasheet
Lithium-ion battery datasheets, also known as specification sheets, are documents that battery manufacturers provide to define the battery’s function, operational limit, performance, reliability, safety, cautions, prohibitions, and warranty. Product manufacturers and customers rely on the datasheets for battery selection and battery management. However, battery datasheets often have ambiguous and, in many cases, misleading terminology and data. This paper reviews and evaluates the datasheets of 25 different lithium-ion battery types from eleven major battery manufacturers. Issues that customers may face are discussed, and recommendations for developing an informative and valuable datasheet that will help customers procure suitable batteries are presented
Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells
Lithium-ion batteries typically exhibit a transition to a more rapid capacity fade trend when subjected to extended charge–discharge cycles and storage conditions. The identification of the knee point can be valuable to identify the more severe degradation trend, and to provide guidance when scheduling battery replacements and planning secondary uses of the battery. However, a concise and repeatable determination of a knee point has not been documented. This paper provides a definition of the knee point which can be used as a degradation metric, and develops an algorithm to identify it. The algorithm is implemented on various data cases, and the results indicate that the approach provides repeatable knee point identification.https://doi.org/10.3390/en1215291
Algorithm to Determine the Knee Point on Capacity Fade Curves of Lithium-Ion Cells
Lithium-ion batteries typically exhibit a transition to a more rapid capacity fade trend when subjected to extended charge–discharge cycles and storage conditions. The identification of the knee point can be valuable to identify the more severe degradation trend, and to provide guidance when scheduling battery replacements and planning secondary uses of the battery. However, a concise and repeatable determination of a knee point has not been documented. This paper provides a definition of the knee point which can be used as a degradation metric, and develops an algorithm to identify it. The algorithm is implemented on various data cases, and the results indicate that the approach provides repeatable knee point identification
Evaluation of Present Accelerated Temperature Testing and Modeling of Batteries
Battery manufacturers and device companies often test batteries at high temperature to accelerate the degradation process. The data collected from these accelerated tests are then used to determine battery performance and reliability over specified nominal operating temperatures. In many cases, companies assume an Arrhenius model, or prescribe a decade rule to conduct the data analysis. This paper presents the flaws in accelerated temperature testing of batteries using the Arrhenius model and the decade rule, with the emphasis on lithium-ion batteries. Experimental case studies demonstrate the inaccuracy of the Arrhenius model. Alternative methods based on reliability science are then provided
Achieving Message-Encapsulated Leveled FHE for IoT Privacy Protection
The rapid development of the Internet of Things has made the issue of privacy protection even more concerning. Privacy protection has affected the large-scale application of the Internet of Things. Fully Homomorphic Encryption (FHE) is a newly emerging public key encryption scheme, which can be used to prevent information leakage. It allows performing arbitrary algebraic operations on data which are encrypted, such that the operation performed on the ciphertext is directly transformed into the corresponding plaintext. Recently, overwhelming majority of FHE schemes are confined to single-bit encryption, whereas how to achieve a multibit FHE scheme is still an open problem. This problem is partially (rather than fully) solved by Hiromasa-Abe-Okamoto (PKC′15), who proposed a packed message FHE scheme which only supports decryption in a bit-by-bit manner. Followed by that, Li-Ma-Morais-Du (Inscrypt′16) proposed a multibit FHE scheme which can decrypt the ciphertext at one time, but their scheme is based on dual LWE assumption. Armed with the abovementioned two schemes, in this paper, we propose an efficient packed message FHE that supports the decryption in two ways: single-bit decryption and one-time decryption
Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems
As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis