12,061 research outputs found
Equilibrium Configuration of Black Holes and the Inverse Scattering Method
The inverse scattering method is applied to the investigation of the
equilibrium configuration of black holes. A study of the boundary problem
corresponding to this configuration shows that any axially symmetric,
stationary solution of the Einstein equations with disconnected event horizon
must belong to the class of Belinskii-Zakharov solutions. Relationships between
the angular momenta and angular velocities of black holes are derived.Comment: LaTeX, 14 pages, no figure
Report of an exploratory study: Safety and liability considerations for photovoltaic modules/panels
An overview of legal issues as they apply to design, manufacture and use of photovoltaic module/array devices is provided and a methodology is suggested for use of the design stage of these products to minimize or eliminate perceived hazards. Questions are posed to stimulate consideration of this area
Implementation of the Quantum Fourier Transform
The quantum Fourier transform (QFT) has been implemented on a three bit
nuclear magnetic resonance (NMR) quantum computer, providing a first step
towards the realization of Shor's factoring and other quantum algorithms.
Implementation of the QFT is presented with fidelity measures, and state
tomography. Experimentally realizing the QFT is a clear demonstration of NMR's
ability to control quantum systems.Comment: 6 pages, 2 figure
On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox
We develop a Hamiltonian formalism which can be used to discuss the physics
of a massless scalar field in a gravitational background of a Schwarzschild
black hole. Using this formalism we show that the time evolution of the system
is unitary and yet all known results such as the existence of Hawking radiation
can be readily understood. We then point out that the Hamiltonian formalism
leads to interesting observations about black hole entropy and the information
paradox.Comment: 45 pages, revte
Laser cooling of new atomic and molecular species with ultrafast pulses
We propose a new laser cooling method for atomic species whose level
structure makes traditional laser cooling difficult. For instance, laser
cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while
multielectron atoms need single-frequency light at many widely separated
frequencies. These restrictions can be eased by laser cooling on two-photon
transitions with ultrafast pulse trains. Laser cooling of hydrogen,
antihydrogen, and many other species appears feasible, and extension of the
technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR
Spontaneous soliton formation and modulational instability in Bose-Einstein condensates
The dynamics of an elongated attractive Bose-Einstein condensate in an
axisymmetric harmonic trap is studied. It is shown that density fringes caused
by self-interference of the condensate order parameter seed modulational
instability. The latter has novel features in contradistinction to the usual
homogeneous case known from nonlinear fiber optics. Several open questions in
the interpretation of the recent creation of the first matter-wave bright
soliton train [Strecker {\it et al.} Nature {\bf 417} 150 (2002)] are
addressed. It is shown that primary transverse collapse, followed by secondary
collapse induced by soliton--soliton interactions, produce bursts of hot atoms
at different time scales.Comment: 4 pages, 3 figures. Phys. Rev. Lett. in pres
Measurement of the Branching Fractions for D^0 → π^-e^+v_e and D^0 → + K^-e^+V_e and Determination of │V_(cd)/V_(cs)│^2
Measurements of the exclusive branching fractions B(D^0→π^-e^+ν_e) and B(D^0→K^-e^+ν_e), using data collected at the ψ(3770) with the Mark III detector at the SLAC e^+e^- storage ring SPEAR, are used to determine the ratio of the Kobayashi-Maskawa matrix elements │V_(cd)/V_(cs)│^2 =0.057_(-0.015)^(+0.038)±0.005
Search for the decay D^0→K^0e^+e^-
A search for the decay of the charmed meson D^0→K^0e^+e^- is presented, based on data collected at the ψ(3770) resonance with the Mark III detector at the SLAC storage ring SPEAR. No evidence for this process is found, resulting in an upper limit on the decay branching ratio of 1.7×10^(-3) at the 90% confidence level
Fidelity Decay as an Efficient Indicator of Quantum Chaos
Recent work has connected the type of fidelity decay in perturbed quantum
models to the presence of chaos in the associated classical models. We
demonstrate that a system's rate of fidelity decay under repeated perturbations
may be measured efficiently on a quantum information processor, and analyze the
conditions under which this indicator is a reliable probe of quantum chaos and
related statistical properties of the unperturbed system. The type and rate of
the decay are not dependent on the eigenvalue statistics of the unperturbed
system, but depend on the system's eigenvector statistics in the eigenbasis of
the perturbation operator. For random eigenvector statistics the decay is
exponential with a rate fixed precisely by the variance of the perturbation's
energy spectrum. Hence, even classically regular models can exhibit an
exponential fidelity decay under generic quantum perturbations. These results
clarify which perturbations can distinguish classically regular and chaotic
quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction
and discussion
- …