177 research outputs found
Inpainting of Cyclic Data using First and Second Order Differences
Cyclic data arise in various image and signal processing applications such as
interferometric synthetic aperture radar, electroencephalogram data analysis,
and color image restoration in HSV or LCh spaces. In this paper we introduce a
variational inpainting model for cyclic data which utilizes our definition of
absolute cyclic second order differences. Based on analytical expressions for
the proximal mappings of these differences we propose a cyclic proximal point
algorithm (CPPA) for minimizing the corresponding functional. We choose
appropriate cycles to implement this algorithm in an efficient way. We further
introduce a simple strategy to initialize the unknown inpainting region.
Numerical results both for synthetic and real-world data demonstrate the
performance of our algorithm.Comment: accepted Converence Paper at EMMCVPR'1
A Second Order TV-type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data
In this paper we consider denoising and inpainting problems for higher
dimensional combined cyclic and linear space valued data. These kind of data
appear when dealing with nonlinear color spaces such as HSV, and they can be
obtained by changing the space domain of, e.g., an optical flow field to polar
coordinates. For such nonlinear data spaces, we develop algorithms for the
solution of the corresponding second order total variation (TV) type problems
for denoising, inpainting as well as the combination of both. We provide a
convergence analysis and we apply the algorithms to concrete problems.Comment: revised submitted versio
Exact algorithms for -TV regularization of real-valued or circle-valued signals
We consider -TV regularization of univariate signals with values on the
real line or on the unit circle. While the real data space leads to a convex
optimization problem, the problem is non-convex for circle-valued data. In this
paper, we derive exact algorithms for both data spaces. A key ingredient is the
reduction of the infinite search spaces to a finite set of configurations,
which can be scanned by the Viterbi algorithm. To reduce the computational
complexity of the involved tabulations, we extend the technique of distance
transforms to non-uniform grids and to the circular data space. In total, the
proposed algorithms have complexity where is the length
of the signal and is the number of different values in the data set. In
particular, the complexity is for quantized data. It is the
first exact algorithm for TV regularization with circle-valued data, and it is
competitive with the state-of-the-art methods for scalar data, assuming that
the latter are quantized
Total variation regularization for manifold-valued data
We consider total variation minimization for manifold valued data. We propose
a cyclic proximal point algorithm and a parallel proximal point algorithm to
minimize TV functionals with -type data terms in the manifold case.
These algorithms are based on iterative geodesic averaging which makes them
easily applicable to a large class of data manifolds. As an application, we
consider denoising images which take their values in a manifold. We apply our
algorithms to diffusion tensor images, interferometric SAR images as well as
sphere and cylinder valued images. For the class of Cartan-Hadamard manifolds
(which includes the data space in diffusion tensor imaging) we show the
convergence of the proposed TV minimizing algorithms to a global minimizer
Jump-sparse and sparse recovery using Potts functionals
We recover jump-sparse and sparse signals from blurred incomplete data
corrupted by (possibly non-Gaussian) noise using inverse Potts energy
functionals. We obtain analytical results (existence of minimizers, complexity)
on inverse Potts functionals and provide relations to sparsity problems. We
then propose a new optimization method for these functionals which is based on
dynamic programming and the alternating direction method of multipliers (ADMM).
A series of experiments shows that the proposed method yields very satisfactory
jump-sparse and sparse reconstructions, respectively. We highlight the
capability of the method by comparing it with classical and recent approaches
such as TV minimization (jump-sparse signals), orthogonal matching pursuit,
iterative hard thresholding, and iteratively reweighted minimization
(sparse signals)
Subdivision schemes with general dilation in the geometric and nonlinear setting
AbstractWe establish results on convergence and smoothness of subdivision rules operating on manifold-valued data which are based on a general dilation matrix. In particular we cover irregular combinatorics. For the regular grid case results are not restricted to isotropic dilation matrices. The nature of the results is that intrinsic subdivision rules which operate on geometric data inherit smoothness properties of their linear counterparts
Model-based learning of local image features for unsupervised texture segmentation
Features that capture well the textural patterns of a certain class of images
are crucial for the performance of texture segmentation methods. The manual
selection of features or designing new ones can be a tedious task. Therefore,
it is desirable to automatically adapt the features to a certain image or class
of images. Typically, this requires a large set of training images with similar
textures and ground truth segmentation. In this work, we propose a framework to
learn features for texture segmentation when no such training data is
available. The cost function for our learning process is constructed to match a
commonly used segmentation model, the piecewise constant Mumford-Shah model.
This means that the features are learned such that they provide an
approximately piecewise constant feature image with a small jump set. Based on
this idea, we develop a two-stage algorithm which first learns suitable
convolutional features and then performs a segmentation. We note that the
features can be learned from a small set of images, from a single image, or
even from image patches. The proposed method achieves a competitive rank in the
Prague texture segmentation benchmark, and it is effective for segmenting
histological images
- …