10 research outputs found

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere

    Full text link

    Structures and property distributions in the three oceans surrounding Canada in 2007: A basis for a long‐term ocean climate monitoring strategy

    No full text

    Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions

    No full text
    Under modern conditions, sediments from the large continental shelves of the Arctic Ocean are mixed by currents, incorporated into sea ice and redistributed over the Arctic Basin through the Beaufort Gyre and Trans-Polar Drift major sea-ice routes. Here, compiling data from the literature and combining them with our own data, we explore how radiogenic isotopes (Sr, Pb and Nd) from Arctic shelf surface sediment can be used to identify inland and coastal sediment sources. Based on discriminant function analyses, the use of two-isotope systematics introduces a large uncertainty (ca. 50%) that prevents unequivocal identifications of regional shelf signatures. However, when using all three isotopic systems, shelf provinces can be distinguished within a ca. 23% uncertainty only, which is mainly due to isotopic overlaps between the Canadian Arctic Archipelago and the Barents–Kara seas areas. Whereas the Canadian Arctic shelf seems mostly influenced by Mackenzie River supplies, as documented by earlier studies, a clear Lena River signature cannot be clearly identified in the Laptev–Kara seas area. The few available data on sediments collected in sea-ice rafts suggest sea ice originating mostly from the Laptev Sea area, along with non-negligible contributions from the East Siberian and Kara seas. At last, whereas a clear radiogenic identity of the Mackenzie River in sediments can be identified in the Beaufort Sea margin, isotopic signatures from major Russian rivers cannot be deciphered in modern Siberian margin sediments because of an intense mixing by sea ice and currents of inland and coastal supplies
    corecore