206 research outputs found
The AGN Luminosity Fraction in Merging Galaxies
Galaxy mergers are key events in galaxy evolution, often causing massive
starbursts and fueling active galactic nuclei (AGN). In these highly dynamic
systems, it is not yet precisely known how much starbursts and AGN respectively
contribute to the total luminosity, at what interaction stages they occur, and
how long they persist. Here we estimate the fraction of the bolometric infrared
(IR) luminosity that can be attributed to AGN by measuring and modeling the
full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to
33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy
Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers,
found in the Revised Bright Galaxy Sample or
Faint Source Catalog, our sample includes a comparison sample of 12 galaxy
mergers from the Interacting Galaxies Survey, mostly early-stage. We
perform identical SED modeling of simulated mergers to validate our methods,
and we supplement the SED data with mid-IR spectra of diagnostic lines obtained
with InfraRed Spectrograph. The estimated AGN contributions to the IR
luminosities vary from system to system from 0% up to 91% but are significantly
greater in the later-stage, more luminous mergers, consistent with what is
known about galaxy evolution and AGN triggering.Comment: 26 pages, 10 figure
Dependence of Galaxy Quenching on Halo Mass and Distance from its Centre
We study the dependence of star-formation quenching on galaxy mass and
environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we
define quenching by low star-formation rate rather than by red colour, given
that one third of the red galaxies are star forming. We address stellar mass
M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to
the halo centre D. The fraction of quenched galaxies appears more strongly
correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites
quenching also depends on D. We present the M*-Mh relation for centrals at z~1.
At z~1, the dependence of quenching on M* at fixed Mh is somewhat more
pronounced than at z~0, but the quenched fraction is low (10%) and the haloes
are less massive. For satellites, M*-dependent quenching is noticeable at high
D, suggesting a quenching dependence on sub-halo mass for recently captured
satellites. At small D, where satellites likely fell in more than a few Gyr
ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of
quenching is consistent with theoretical wisdom where virial shock heating in
massive haloes shuts down accretion and triggers ram-pressure stripping,
causing quenching. The interpretation of deltaN is complicated by the fact that
it depends on the number of observed group members compared to N, motivating
the use of D as a better measure of local environment.Comment: 23 pages, 13 figures, accepted by MNRA
On the Evolution of the Velocity-Mass-Size Relations of Disk-Dominated Galaxies over the Past 10 Billion Years
We study the evolution of the scaling relations between maximum circular
velocity, stellar mass and optical half-light radius of star-forming
disk-dominated galaxies in the context of LCDM-based galaxy formation models.
Using data from the literature combined with new data from the DEEP2 and AEGIS
surveys we show that there is a consistent observational and theoretical
picture for the evolution of these scaling relations from z\sim 2 to z=0. The
evolution of the observed stellar scaling relations is weaker than that of the
virial scaling relations of dark matter haloes, which can be reproduced, both
qualitatively and quantitatively, with a simple, cosmologically-motivated model
for disk evolution inside growing NFW dark matter haloes. In this model optical
half-light radii are smaller, both at fixed stellar mass and maximum circular
velocity, at higher redshifts. This model also predicts that the scaling
relations between baryonic quantities evolve even more weakly than the
corresponding stellar relations. We emphasize, though, that this weak evolution
does not imply that individual galaxies evolve weakly. On the contrary,
individual galaxies grow strongly in mass, size and velocity, but in such a way
that they move largely along the scaling relations. Finally, recent
observations have claimed surprisingly large sizes for a number of star-forming
disk galaxies at z \sim 2, which has caused some authors to suggest that high
redshift disk galaxies have abnormally high spin parameters. However, we argue
that the disk scale lengths in question have been systematically overestimated
by a factor \sim 2, and that there is an offset of a factor \sim 1.4 between
H\alpha sizes and optical sizes. Taking these effects into account, there is no
indication that star forming galaxies at high redshifts (z\sim 2) have
abnormally high spin parameters.Comment: 19 pages, 10 figures, accepted to MNRAS, minor changes to previous
versio
The DEEP3 Galaxy Redshift Survey: The Impact of Environment on the Size Evolution of Massive Early-type Galaxies at Intermediate Redshift
Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we
investigate the relationship between the environment and the structure of
galaxies residing on the red sequence at intermediate redshift. Within the
massive (10 < log(M*/Msun) < 11) early-type population at 0.4 < z <1.2, we find
a significant correlation between local galaxy overdensity (or environment) and
galaxy size, such that early-type systems in higher-density regions tend to
have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts
of equal stellar mass and Sersic index in lower-density environments. This
observed size-density relation is consistent with a model of galaxy formation
in which the evolution of early-type systems at z < 2 is accelerated in
high-density environments such as groups and clusters and in which dry, minor
mergers (versus mechanisms such as quasar feedback) play a central role in the
structural evolution of the massive, early-type galaxy population.Comment: 11 pages, 5 figures, 2 tables; resubmitted to MNRAS after addressing
referee's comments (originally submitted to journal on August 16, 2011
Recommended from our members
Application of multiplexed ion mobility spectrometry towards the identification of host protein signatures of treatment effect in pulmonary tuberculosis.
RationaleThe monitoring of TB treatments in clinical practice and clinical trials relies on traditional sputum-based culture status indicators at specific time points. Accurate, predictive, blood-based protein markers would provide a simpler and more informative view of patient health and response to treatment.ObjectiveWe utilized sensitive, high throughput multiplexed ion mobility-mass spectrometry (IM-MS) to characterize the serum proteome of TB patients at the start of and at 8 weeks of rifamycin-based treatment. We sought to identify treatment specific signatures within patients as well as correlate the proteome signatures to various clinical markers of treatment efficacy.MethodsSerum samples were collected from 289 subjects enrolled in CDC TB Trials Consortium Study 29 at time of enrollment and at the end of the intensive phase (after 40 doses of TB treatment). Serum proteins were immunoaffinity-depleted of high abundant components, digested to peptides and analyzed for data acquisition utilizing a unique liquid chromatography IM-MS platform (LC-IM-MS). Linear mixed models were utilized to identify serum protein changes in the host response to antibiotic treatment as well as correlations with culture status end points.ResultsA total of 10,137 peptides corresponding to 872 proteins were identified, quantified, and used for statistical analysis across the longitudinal patient cohort. In response to TB treatment, 244 proteins were significantly altered. Pathway/network comparisons helped visualize the interconnected proteins, identifying up regulated (lipid transport, coagulation cascade, endopeptidase activity) and down regulated (acute phase) processes and pathways in addition to other cross regulated networks (inflammation, cell adhesion, extracellular matrix). Detection of possible lung injury serum proteins such as HPSE, significantly downregulated upon treatment. Analyses of microbiologic data over time identified a core set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2) which change in response to treatment and also strongly correlate with culture status. A similar set of proteins at baseline were found to be predictive of week 6 and 8 culture status.ConclusionA comprehensive host serum protein dataset reflective of TB treatment effect is defined. A repeating set of serum proteins (TTHY, AFAM, CRP, RET4, SAA1, PGRP2, among others) were found to change significantly in response to treatment, to strongly correlate with culture status, and at baseline to be predictive of future culture conversion. If validated in cohorts with long term follow-up to capture failure and relapse of TB, these protein markers could be developed for monitoring of treatment in clinical trials and in patient care
CoGeNT Interpretations
Recently, the CoGeNT experiment has reported events in excess of expected
background. We analyze dark matter scenarios which can potentially explain this
signal. Under the standard case of spin independent scattering with equal
couplings to protons and neutrons, we find significant tensions with existing
constraints. Consistency with these limits is possible if a large fraction of
the putative signal events is coming from an additional source of experimental
background. In this case, dark matter recoils cannot be said to explain the
excess, but are consistent with it. We also investigate modifications to dark
matter scattering that can evade the null experiments. In particular, we
explore generalized spin independent couplings to protons and neutrons, spin
dependent couplings, momentum dependent scattering, and inelastic interactions.
We find that some of these generalizations can explain most of the CoGeNT
events without violation of other constraints. Generalized couplings with some
momentum dependence, allows further consistency with the DAMA modulation
signal, realizing a scenario where both CoGeNT and DAMA signals are coming from
dark matter. A model with dark matter interacting and annihilating into a new
light boson can realize most of the scenarios considered.Comment: 24 pages, 12 figs, v2: published version, some discussions clarifie
The AGN contribution to the UV-FIR luminosities of interacting galaxies and its role in identifying the Main Sequence
Emission from active galactic nuclei (AGNs) is known to play an important
role in the evolution of many galaxies including luminous and ultraluminous
systems (U/LIRGs), as well as merging systems. However, the extent, duration,
and exact effects of its influence are still imperfectly understood. To assess
the impact of AGNs on interacting systems, we present a Spectral Energy
Distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and
systematically re-reduce archival broad-band imaging mosaics from the
ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE,
Spitzer and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes
from fine-structure lines that trace star formation and AGN activity. Utilizing
the SED modelling and fitting tool CIGALE, we derive the physical conditions of
the ISM, both in star-forming regions and in nuclear regions dominated by the
AGN in these galaxies. We investigate how the star formation rates (SFRs) and
the fractional AGN contributions () depend on stellar mass,
galaxy type, and merger stage. We find that luminous galaxies more massive than
about are likely to deviate significantly from the
conventional galaxy main-sequence relation. Interestingly, infrared AGN
luminosity and stellar mass in this set of objects are much tighter than SFR
and stellar mass. We find that buried AGNs may occupy a locus between bright
starbursts and pure AGNs in the -[Ne V]/[Ne II] plane. We
identify a modest correlation between and mergers in their later
stages.Comment: Accepted for publication in MNRAS; 24 pages, 15 figures, 3 tables
(plus appendix
Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4
Galactic winds are a prime suspect for the metal enrichment of the
intergalactic medium and may have a strong influence on the chemical evolution
of galaxies and the nature of QSO absorption line systems. We use a sample of
1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that
blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies
at this epoch. This is the first detection of frequent outflowing galactic
winds at z~1. The presence and depth of absorption are independent of AGN
spectral signatures or galaxy morphology; major mergers are not a prerequisite
for driving a galactic wind from massive galaxies. Outflows are found in
coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in
star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The
outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic
velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the
most massive, highest SFR galaxies. The velocities suggest that the outflowing
gas can escape into the IGM and that massive galaxies can produce
cosmologically and chemically significant outflows. Both the Mg II equivalent
width and the outflow velocity are larger for galaxies of higher stellar mass
and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift
IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy
population at z~1 indicates that galactic winds occur in the progenitors of
massive spirals as well as those of ellipticals. The increase of outflow
velocity with mass and SFR constrains theoretical models of galaxy evolution
that include feedback from galactic winds, and may favor momentum-driven models
for the wind physics.Comment: Accepted by ApJ. 25 pages, 17 figures. Revised to add discussions of
intervening absorbers and AGN-driven outflows; conclusions unchange
The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts
We describe the design and data sample from the DEEP2 Galaxy Redshift Survey,
the densest and largest precision-redshift survey of galaxies at z ~ 1
completed to date. The survey has conducted a comprehensive census of massive
galaxies, their properties, environments, and large-scale structure down to
absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the
DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2
divided into four separate fields, observed to a limiting apparent magnitude of
R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three
of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5
times more efficiently than in a purely magnitude-limited sample. Approximately
sixty percent of eligible targets are chosen for spectroscopy, yielding nearly
53,000 spectra and more than 38,000 reliable redshift measurements. Most of the
targets which fail to yield secure redshifts are blue objects that lie beyond z
~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high
spectral resolution (R~6000), accurate and secure redshifts, and unique
internal kinematic information. Extensive ancillary data are available in the
DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into
one of the richest multiwavelength regions on the sky. DEEP2 surpasses other
deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift
accuracy, sample number density, and amount of spectral information. We also
provide an overview of the scientific highlights of the DEEP2 survey thus far.
This paper is intended as a handbook for users of the DEEP2 Data Release 4,
which includes all DEEP2 spectra and redshifts, as well as for the
publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]Comment: submitted to ApJS; data products available for download at
http://deep.berkeley.edu/DR4
- …