707 research outputs found

    Induction of Immunological Tolerance by Oral Anti-CD3

    Get PDF
    In recent years, our knowledge about immunoregulation and autoimmunity has significantly advanced, but nontoxic and more effective treatments for different inflammatory and autoimmune diseases are still lacking. Oral tolerance is of unique immunologic importance because it is a continuous natural immunologic event driven by exogenous antigen and is an attractive approach for treatment of these conditions. Parenteral administration of anti-CD3 monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. Orally administered anti-CD3 monoclonal antibody is biologically active in the gut and suppresses experimental models of autoimmune diseases. Orally delivered antibody does not have side effects including cytokine release syndromes, thus oral anti-CD3 antibody is clinically applicable for chronic therapy. Here we review findings that identify a novel and powerful immunologic approach that is widely applicable for the treatment of human autoimmune conditions

    Oral Tolerance: Therapeutic Implications for Autoimmune Diseases

    Get PDF
    Oral tolerance is classically defined as the suppression of immune responses to antigens (Ag) that have been administered previously by the oral route. Multiple mechanisms of tolerance are induced by oral Ag. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral Ag induces Th2 (IL-4/IL-10) and Th3 (TGF-β) regulatory T cells (Tregs) plus CD4+CD25+ regulatory cells and LAP+T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-β, cholera toxin B subunit (CTB), Flt-3 ligand, anti-CD40 ligand and continuous feeding of Ag. In addition to oral tolerance, nasal tolerance has also been shown to be effective in suppressing inflammatory conditions with the advantage of a lower dose requirement. Oral and nasal tolerance suppress several animal models of autoimmune diseases including experimental allergic encephalomyelitis (EAE), uveitis, thyroiditis, myasthenia, arthritis and diabetes in the nonobese diabetic (NOD) mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, colitis and stroke. Oral tolerance has been tested in human autoimmune diseases including MS, arthritis, uveitis and diabetes and in allergy, contact sensitivity to DNCB, nickel allergy. Positive results have been observed in phase II trials and new trials for arthritis, MS and diabetes are underway. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time and Ag-specific mechanism of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral), formulation, mucosal adjuvants, combination therapy and early therapy

    Resistance to Experimental Autoimmune Encephalomyelitis in Mice Lacking the Cc Chemokine Receptor (Ccr2)

    Get PDF
    Monocyte recruitment to the central nervous system (CNS) is a necessary step in the development of pathologic inflammatory lesions in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. Monocyte chemoattractant protein (MCP)-1, a potent agonist for directed monocyte migration, has been implicated in the pathogenesis of EAE. Here we report that deficiency in CC chemokine receptor (CCR)2, the receptor for MCP-1, confers resistance to EAE induced with a peptide derived from myelin oligodendrocyte glycoprotein peptide 35–55 (MOGp35–55). CCR2−/− mice immunized with MOGp35–55 failed to develop mononuclear cell inflammatory infiltrates in the CNS and failed to increase CNS levels of the chemokines RANTES (regulated on activation, normal T cell expressed and secreted), MCP-1, and interferon (IFN)-inducible protein 10 (IP-10) as well the chemokine receptors CCR1, CCR2, and CCR5. Additionally, T cells from CCR2−/− immunized mice showed decreased antigen-induced proliferation and production of IFN-γ compared with wild-type immunized controls, suggesting that CCR2 enhances the T helper cell type 1 immune response in EAE. These data indicate that CCR2 plays a necessary and nonredundant role in the pathogenesis of EAE

    Variations of the ISM Compactness Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations

    Get PDF
    (abridged) The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (MM_*) plane, usually referred to as the star formation Main Sequence (MS). Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present \textsc{Chiburst}, a Markov Chain Monte Carlo (MCMC) Spectral Energy Distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, star formation rates, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate (sSFR), and the compactness parameter C\mathcal{C}, that parametrizes this geometry and hence the evolution of dust temperature (TdustT_{\rm{dust}}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of Luminous Infrared Galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.Comment: 18 pages, 10 figures, accepted in Ap

    Myelin Oligodendrocyte Glycoprotein–specific T Cell Receptor Transgenic Mice Develop Spontaneous Autoimmune Optic Neuritis

    Get PDF
    Multiple sclerosis (MS) is considered to be an autoimmune disease of the central nervous system (CNS) that in many patients first presents clinically as optic neuritis. The relationship of optic neuritis to MS is not well understood. We have generated novel T cell receptor (TCR) transgenic mice specific for myelin oligodendrocyte glycoprotein (MOG). MOG-specific transgenic T cells are not deleted nor tolerized and are functionally competent. A large proportion (>30%) of MOG-specific TCR transgenic mice spontaneously develop isolated optic neuritis without any clinical nor histological evidence of experimental autoimmune encephalomyelitis (EAE). Optic neuritis without EAE could also be induced in these mice by sensitization with suboptimal doses of MOG. The predilection of these mice to develop optic neuritis is associated with higher expression of MOG in the optic nerve than in the spinal cord. These results demonstrate that clinical manifestations of CNS autoimmune disease will vary depending on the identity of the target autoantigen and that MOG-specific T cell responses are involved in the genesis of isolated optic neuritis

    The AGN Luminosity Fraction in Merging Galaxies

    Get PDF
    Galaxy mergers are key events in galaxy evolution, often causing massive starbursts and fueling active galactic nuclei (AGN). In these highly dynamic systems, it is not yet precisely known how much starbursts and AGN respectively contribute to the total luminosity, at what interaction stages they occur, and how long they persist. Here we estimate the fraction of the bolometric infrared (IR) luminosity that can be attributed to AGN by measuring and modeling the full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to 33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers, found in the InfraredInfrared ArrayArray SatelliteSatellite Revised Bright Galaxy Sample or Faint Source Catalog, our sample includes a comparison sample of 12 galaxy mergers from the SpitzerSpitzer Interacting Galaxies Survey, mostly early-stage. We perform identical SED modeling of simulated mergers to validate our methods, and we supplement the SED data with mid-IR spectra of diagnostic lines obtained with SpitzerSpitzer InfraRed Spectrograph. The estimated AGN contributions to the IR luminosities vary from system to system from 0% up to 91% but are significantly greater in the later-stage, more luminous mergers, consistent with what is known about galaxy evolution and AGN triggering.Comment: 26 pages, 10 figure

    Rule violation errors are associated with right lateral prefrontal cortex atrophy in neurodegenerative disease

    Get PDF
    Good cognitive performance requires adherence to rules specific to the task at hand. Patients with neurological disease often make rule violation errors, but the anatomical basis for rule violation during cognitive testing remains debated. The current study examined the neuroanatomical correlates of rule violation (RV) errors made on tests of executive functioning in 166 subjects diagnosed with neurodegenerative disease or as neurologically healthy. Specifically, RV errors were voxel-wisely correlated with gray matter volume derived from high-definition MR images using voxel-based morphometry implemented in SPM2. Latent variable analysis showed that rule violation errors tapped a unitary construct separate from repetition errors. This analysis was used to generate factor scores to represent what is common among rule violation errors across tests. The extracted rule violation factor scores correlated with tissue loss in the lateral middle and inferior frontal gyri and the caudate nucleus bilaterally. When a more stringent control for global cognitive functioning was applied using Mini Mental State Exam scores, only the correlations with the right lateral prefrontal cortex remained significant. These data underscore the importance of right lateral prefrontal cortex in behavioral monitoring and highlight the potential of rule violation error assessment for identifying patients with damage to this region
    corecore