28 research outputs found

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Higher derivative gravity and asymptotic safety in diverse dimensions

    Full text link
    We derive the one-loop beta functions for a theory of gravity with generic action containing up to four derivatives. The calculation is done in arbitrary dimension and on an arbitrary background. The special cases of three, four, near four, five and six dimensions are discussed in some detail. In all these dimensions there are nontrivial UV fixed points (FPs), which mean that within the approximations there are asymptotically safe trajectories. We also find an indication that a Weyl-invariant FP exists in four dimensions. The new massive gravity in three dimensions does not correspond to a FP. \ua9 2014 IOP Publishing Ltd
    corecore