15,859 research outputs found
Quantum electrodynamics for vector mesons
Quantum electrodynamics for mesons is considered. It is shown that, at
tree level, the value of the gyromagnetic ratio of the is fixed to 2
in a self-consistent effective quantum field theory. Further, the mixing
parameter of the photon and the neutral vector meson is equal to the ratio of
electromagnetic and strong couplings, leading to the mass difference
at tree order.Comment: 4 pages, 2 figures, REVTeX 4, accepted for publication in PR
Quantum Contributions to Cosmological Correlations II: Can These Corrections Become Large?
This is a sequel to a previous detailed study of quantum corrections to
cosmological correlations. It was found there that except in special cases
these corrections depend on the whole history of inflation, not just on the
behavior of fields at horizon exit. It is shown here that at least in
perturbation theory these corrections can nevertheless not be proportional to
positive powers of the Robertson--Walker scale factor, but only at most to
powers of its logarithm, and are therefore never large.Comment: 10 pages. Some explanations and references added. Paper now accepted
for publication in Physical Revie
The growth of galaxies in cosmological simulations of structure formation
We use hydrodynamic simulations to examine how the baryonic components of
galaxies are assembled, focusing on the relative importance of mergers and
smooth accretion in the formation of ~L_* systems. In our primary simulation,
which models a (50\hmpc)^3 comoving volume of a Lambda-dominated cold dark
matter universe, the space density of objects at our (64-particle) baryon mass
resolution threshold, M_c=5.4e10 M_sun, corresponds to that of observed
galaxies with L~L_*/4. Galaxies above this threshold gain most of their mass by
accretion rather than by mergers. At the redshift of peak mass growth, z~2,
accretion dominates over merging by about 4:1. The mean accretion rate per
galaxy declines from ~40 M_sun/yr at z=2 to ~10 M_sun/yr at z=0, while the
merging rate peaks later (z~1) and declines more slowly, so by z=0 the ratio is
about 2:1. We cannot distinguish truly smooth accretion from merging with
objects below our mass resolution threshold, but extrapolating our measured
mass spectrum of merging objects, dP/dM ~ M^a with a ~ -1, implies that
sub-resolution mergers would add relatively little mass. The global star
formation history in these simulations tracks the mass accretion rate rather
than the merger rate. At low redshift, destruction of galaxies by mergers is
approximately balanced by the growth of new systems, so the comoving space
density of resolved galaxies stays nearly constant despite significant mass
evolution at the galaxy-by-galaxy level. The predicted merger rate at z<~1
agrees with recent estimates from close pairs in the CFRS and CNOC2 redshift
surveys.Comment: Submitted to ApJ, 35 pp including 15 fig
Reply to `Can infrared gravitons screen ?'
We reply to the recent criticism by Garriga and Tanaka of our proposal that
quantum gravitational loop corrections may lead to a secular screening of the
effective cosmological constant. Their argument rests upon a renormalization
scheme in which the composite operator is defined to be the trace of the renormalized field equations.
Although this is a peculiar prescription, we show that it {\it does not
preclude secular screening}. Moreover, we show that a constant Ricci scalar
{\it does not even classically} imply a constant expansion rate. Other
important points are: (1) the quantity of Garriga and Tanaka is
neither a properly defined composite operator, nor is it constant; (2) gauge
dependence does not render a Green's function devoid of physical content; (3)
scalar models on a non-dynamical de Sitter background (for which there is no
gauge issue) can induce arbitrarily large secular contributions to the stress
tensor; (4) the same secular corrections appear in observable quantities in
quantum gravity; and (5) the prospects seem good for deriving a simple
stochastic formulation of quantum gravity in which the leading secular effects
can be summed and for which the expectation values of even complicated, gauge
invariant operators can be computed at leading order.Comment: 17 pages, no figures, uses LaTeX 2epsilon. Version 2 adds important
points about R_ren being neither finite nor constant, and that a constant
Ricci scalar is not even classically an indicator of de Sitter expansion.
Version 3 corrects some typoes and updates the reference
Low Energy Constants from High Energy Theorems
New constraints on resonance saturation in chiral perturbation theory are
investigated. These constraints arise because each consistent saturation scheme
must map to a representation of the full QCD chiral symmetry group. The
low-energy constants of chiral perturbation theory are then related by a set of
mixing angles. It is shown that vector meson dominance is a consequence of the
fact that nature has chosen the lowest-dimensional nontrivial chiral
representation. It is further shown that chiral symmetry places an upper bound
on the mass of the lightest scalar in the hadron spectrum.Comment: 11 pages TeX and mtexsis.te
Performance and temperature dependencies of proton irradiated n/p GaAs and n/p silicon cells
The n/p homojunction GaAs cell is found to be more radiation resistant than p/nheteroface GaAs under 10 MeV proton irradiation. Both GaAs cell types outperform conventional silicon n/p cells under the same conditions. An increase temperature dependency of maximum power for the GaAs n/p cells is attributed largely to differences in Voc between the two GaAs cell types. These results and diffusion length considerations are consistent with the conclusion that p-type GaAs is more radiation resistant than n-type and therefore that the n/p configuration is possibly favored for use in the space radiation environment. However, it is concluded that additional work is required in order to choose between the two GaAs cell configurations
The spin-statistics connection in classical field theory
The spin-statistics connection is obtained for a simple formulation of a
classical field theory containing even and odd Grassmann variables. To that
end, the construction of irreducible canonical realizations of the rotation
group corresponding to general causal fields is reviewed. The connection is
obtained by imposing local commutativity on the fields and exploiting the
parity operation to exchange spatial coordinates in the scalar product of
classical field evaluated at one spatial location with the same field evaluated
at a distinct location. The spin-statistics connection for irreducible
canonical realizations of the Poincar\'{e} group of spin is obtained in the
form: Classical fields and their conjugate momenta satisfy fundamental
field-theoretic Poisson bracket relations for 2 even, and fundamental
Poisson antibracket relations for 2 oddComment: 27 pages. Typos and sign error corrected; minor revisions to tex
- …