559 research outputs found

    Second quantization approach to composite hadron interactions in quark models

    Full text link
    Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions.Comment: Correction on titl

    On the realization of Symmetries in Quantum Mechanics

    Full text link
    The aim of this paper is to give a simple, geometric proof of Wigner's theorem on the realization of symmetries in quantum mechanics that clarifies its relation to projective geometry. Although several proofs exist already, it seems that the relevance of Wigner's theorem is not fully appreciated in general. It is Wigner's theorem which allows the use of linear realizations of symmetries and therefore guarantees that, in the end, quantum theory stays a linear theory. In the present paper, we take a strictly geometrical point of view in order to prove this theorem. It becomes apparent that Wigner's theorem is nothing else but a corollary of the fundamental theorem of projective geometry. In this sense, the proof presented here is simple, transparent and therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page

    Electromagnetic corrections in the anomaly sector

    Full text link
    Chiral perturbation theory in the anomaly sector for Nf=2N_f=2 is extended to include dynamical photons, thereby allowing a complete treatment of isospin breaking. A minimal set of independent chiral lagrangian terms is determined and the divergence structure is worked out. There are contributions from irreducible and also from reducible one-loop graphs, a feature of ChPT at order larger than four. The generating functional is non-anomalous at order e2p4e^2p^4, but not necessarily at higher order in e2e^2. Practical applications to γπππ\gamma\pi\to\pi\pi and to the π02γ\pi^0\to2\gamma amplitudes are considered. In the latter case, a complete discussion of the corrections beyond current algebra is presented including quark mass as well as electromagnetic effects.Comment: 26 pages, 3 figure

    Electromagnetic field at Finite Temperature: A first order approach

    Full text link
    In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.Comment: 6 pages, Latex2e, title changed and minimal modification

    Cosmic acceleration from second order gauge gravity

    Full text link
    We construct a phenomenological theory of gravitation based on a second order gauge formulation for the Lorentz group. The model presents a long-range modification for the gravitational field leading to a cosmological model provided with an accelerated expansion at recent times. We estimate the model parameters using observational data and verify that our estimative for the age of the Universe is of the same magnitude than the one predicted by the standard model. The transition from the decelerated expansion regime to the accelerated one occurs recently (at 9.3  Gyr\sim9.3\;Gyr).Comment: RevTex4 15 pages, 1 figure. Accepted for publication in Astrophysics & Space Scienc

    Hidden variables with nonlocal time

    Full text link
    To relax the apparent tension between nonlocal hidden variables and relativity, we propose that the observable proper time is not the same quantity as the usual proper-time parameter appearing in local relativistic equations. Instead, the two proper times are related by a nonlocal rescaling parameter proportional to |psi|^2, so that they coincide in the classical limit. In this way particle trajectories may obey local relativistic equations of motion in a manner consistent with the appearance of nonlocal quantum correlations. To illustrate the main idea, we first present two simple toy models of local particle trajectories with nonlocal time, which reproduce some nonlocal quantum phenomena. After that, we present a realistic theory with a capacity to reproduce all predictions of quantum theory.Comment: 16 pages, accepted for publication in Found. Phys., misprints corrected, references update

    The self-consistent bounce: an improved nucleation rate

    Full text link
    We generalize the standard computation of homogeneous nucleation theory at zero temperature to a scenario in which the bubble shape is determined self-consistently with its quantum fluctuations. Studying two scalar models in 1+1 dimensions, we find the self-consistent bounce by employing a two-particle irreducible (2PI) effective action in imaginary time at the level of the Hartree approximation. We thus obtain an effective single bounce action which determines the rate exponent. We use collective coordinates to account for the translational invariance and the growth instability of the bubble and finally present a new nucleation rate prefactor. We compare the results with those obtained using the standard 1-loop approximation and show that the self-consistent rate can differ by several orders of magnitude.Comment: 28 pages, revtex, 7 eps figure

    Nucleation versus Spinodal decomposition in a first order quark hadron phase transition

    Get PDF
    We investigate the scenario of homogeneous nucleation for a first order quark-hadron phase transition in a rapidly expanding background of quark gluon plasma. Using an improved preexponential factor for homogeneous nucleation rate, we solve a set of coupled equations to study the hadronization and the hydrodynamical evolution of the matter. It is found that significant supercooling is possible before hadronization begins. This study also suggests that spinodal decomposition competes with nucleation and may provide an alternative mechanism for phase conversion particularly if the transition is strong enough and the medium is nonviscous. For weak enough transition, the phase conversion may still proceed via homogeneous nucleation.Comment: LaTeX, 10 pages with 7 Postscript figures, more discussions and referencese added, typos correcte

    Renormalization-Group Improved Effective Potential for Interacting Theories with Several Mass Scales in Curved Spacetime

    Full text link
    The renormalization group (RG) is used in order to obtain the RG improved effective potential in curved spacetime. This potential is explicitly calculated for the Yukawa model and for scalar electrodynamics, i.e. theories with several (namely, more than one) mass scales, in a space of constant curvature. Using the λφ4\lambda \varphi^4-theory on a general curved spacetime as an example, we show how it is possible to find the RG improved effective Lagrangian in curved spacetime. As specific applications, we discuss the possibility of curvature induced phase transitions in the Yukawa model and the effective equations (back-reaction problem) for the λφ4\lambda \varphi^4-theory on a De Sitter background.Comment: 18 pages, LaTeX file, UB-ECM-PF 93/2

    QCD vacuum structure in strong magnetic fields

    Get PDF
    We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u-ubar pairs is energetically favorable for fields B > B_crit \sim 10 GeV^2. We contrast the resulting u-ubar condensate with the quark condensate which is present at zero magnetic field, and we estimate the corresponding magnetization as a function of B.Comment: 16 pages, LaTeX, 3 eps figures. v2: references added. v3: fixed typ
    corecore