1,960 research outputs found

    The Abacus Cosmos: A Suite of Cosmological N-body Simulations

    Full text link
    We present a public data release of halo catalogs from a suite of 125 cosmological NN-body simulations from the Abacus project. The simulations span 40 wwCDM cosmologies centered on the Planck 2015 cosmology at two mass resolutions, 4×1010  h−1M⊙4\times 10^{10}\;h^{-1}M_\odot and 1×1010  h−1M⊙1\times 10^{10}\;h^{-1}M_\odot, in 1.1  h−1Gpc1.1\;h^{-1}\mathrm{Gpc} and 720  h−1Mpc720\;h^{-1}\mathrm{Mpc} boxes, respectively. The boxes are phase-matched to suppress sample variance and isolate cosmology dependence. Additional volume is available via 16 boxes of fixed cosmology and varied phase; a few boxes of single-parameter excursions from Planck 2015 are also provided. Catalogs spanning z=1.5z=1.5 to 0.10.1 are available for friends-of-friends and Rockstar halo finders and include particle subsamples. All data products are available at https://lgarrison.github.io/AbacusCosmosComment: 13 pages, 9 figures, 3 tables. Additional figures added for mass resolution convergence tests, and additional redshifts added for existing tests. Matches ApJS accepted versio

    The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey

    Get PDF
    We calculate the angular correlation function of galaxies in the Two Micron All Sky Survey. We minimize the possible contamination by stars, dust, seeing and sky brightness by studying their cross correlation with galaxy density, and limiting the galaxy sample accordingly. We measure the correlation function at scales between 1-18 arcdegs using a half million galaxies. We find a best fit power law to the correlation function has a slope of 0.76 and an amplitude of 0.11. However, there are statistically significant oscillations around this power law. The largest oscillation occurs at about 0.8 degrees, corresponding to 2.8 h^{-1} Mpc at the median redshift of our survey, as expected in halo occupation distribution descriptions of galaxy clustering. We invert the angular correlation function using Singular Value Decomposition to measure the three-dimensional power spectrum and find that it too is in good agreement with previous measurements. A dip seen in the power spectrum at small wavenumber k is statistically consistent with CDM-type power spectra. A fit of CDM-type power spectra to k < 0.2 h Mpc^{-1} give constraints of \Gamma_{eff}=0.116 and \sigma_8=0.96. This suggest a K_s-band linear bias of 1.1+/-0.2. This \Gamma_{eff} is different from the WMAP CMB derived value. On small scales the power-law shape of our power spectrum is shallower than that derived for the SDSS. These facts together imply a biasing of these different galaxies that might be nonlinear, that might be either waveband or luminosity dependent, and that might have a nonlocal origin.Comment: 14 pages, 20 figures, to be published in ApJ January 20th, revision included two new figures, version with high resolution figures can be found here http::ww

    Realistic fluids as source for dynamically accreting black holes in a cosmological background

    Get PDF
    We show that a single imperfect fluid can be used as a source to obtain the generalized McVittie metric as an exact solution to Einstein's equations. The mass parameter in this metric varies with time thanks to a mechanism based on the presence of a temperature gradient. This fully dynamical solution is interpreted as an accreting black hole in an expanding universe if the metric asymptotes to Schwarzschild-de Sitter at temporal infinity. We present a simple but instructive example for the mass function and briefly discuss the structure of the apparent horizons and the past singularity.Comment: 5 pages, 2 figures. Updated references and minor changes to match the version accepted for publishing in PR

    Strong Outflows and Inefficient Star Formation in the Reionization-era Ultra-faint Dwarf Galaxy Eridanus II

    Full text link
    We present novel constraints on the underlying galaxy formation physics (e.g., mass loading factor, star formation history, metal retention) at z≳7z\gtrsim7 for the low-mass (M∗∼105M_*\sim10^5 M⊙_\odot) Local Group ultra-faint dwarf galaxy (UFD) Eridanus {\sc II} (Eri II). Using a hierarchical Bayesian framework, we apply a one-zone chemical evolution model to Eri II's CaHK-based photometric metallicity distribution function (MDF; [Fe/H]) and find that the evolution of Eri II is well-characterized by a short, exponentially declining star-formation history (τSFH=0.39±0.130.18\tau_\text{SFH}=0.39\pm_{0.13}^{0.18} Gyr), a low star-formation efficiency (τSFE=27.56±12.9225.14\tau_\text{SFE}=27.56\pm_{12.92}^{25.14} Gyr), and a large mass-loading factor (η=194.53±42.6733.37\eta=194.53\pm_{42.67}^{33.37}). Our results are consistent with Eri II forming the majority of its stars before the end of reionization. The large mass-loading factor implies strong outflows in the early history of Eri II and is in good agreement with theoretical predictions for the mass-scaling of galactic winds. It also results in the ejection of >>90\% of the metals produced in Eri II. We make predictions for the distribution of [Mg/Fe]-[Fe/H] in Eri II as well as the prevalence of ultra metal-poor stars, both of which can be tested by future chemical abundance measurements. Spectroscopic follow-up of the highest metallicity stars in Eri II ([Fe/H]>−2\text{[Fe/H]} > -2) will greatly improve model constraints. Our new framework can readily be applied to all UFDs throughout the Local Group, providing new insights into the underlying physics governing the evolution of the faintest galaxies in the reionization era.Comment: 20 pages; 12 figures, submitted to MNRA

    Cosmological Constant, Dark Matter, and Electroweak Phase Transition

    Full text link
    Accepting the fine tuned cosmological constant hypothesis, we have recently proposed that this hypothesis can be tested if the dark matter freeze out occurs at the electroweak scale and if one were to measure an anomalous shift in the dark matter relic abundance. In this paper, we numerically compute this relic abundance shift in the context of explicit singlet extensions of the Standard Model and explore the properties of the phase transition which would lead to the observationally most favorable scenario. Through the numerical exploration, we explicitly identify a parameter space in a singlet extension of the standard model which gives order unity observable effects. We also clarify the notion of a temperature dependence in the vacuum energy.Comment: 58 pages, 10 figure
    • …
    corecore