42 research outputs found
Automated Cloud-to-Cloud Migration of Distributed Software Systems for Privacy Compliance
Mit der ständig wachsenden Zahl von verteilten Cloudanwendungen und immer mehr Datenschutzverordnungen wächst das Interesse an legalen Cloudanwendungen. Jedoch ist vielen Betreibern der Legalitätsstatus ihrer Anwendung nicht bekannt. In 2018 wird die neue EU Datenschutzverordnung in Kraft treten. Diese Verordnung beinhaltet empfindliche Strafen für Datenschutzverletzungen. Einer der wichtigsten Faktoren für die Einhaltung der Datenschutzverordnung ist die Verarbeitung von Stammdaten von EU-Bürgern innerhalb der EU. Wir haben für diese Regelung eine Privacy Analyse entwickelt, formalisiert, implementiert und evaluiert. Außerdem haben wir mit iObserve Privacy ein System nach dem MAPE-Prinzip entwickelt, das automatisch Datenschutzverletzungen erkennt und ein alternatives, datenschutzkonformes Systemhosting errechnet. Zudem migriert iObserve Privacy die Cloudanwendung entsprechend dem alternativen Hosting automatisch. Hierdurch können wir eine rechtskonforme Verteilung der Cloudanwendung gewährleisten, ohne das System in seiner Tiefe zu analysieren oder zu verstehen. Jedoch benötigen wir die Closed World Assumption. Wir benutzen PerOpteryx für die Generierung von rechtskonformen, alternativen Hostings. Basierend auf diesem Hosting errechnen wir eine Sequenz von Adaptionsschritten zur Wiedererlangung der Rechtskonformität. Wenn Fehler auftreten, nutzen wir das Operator-in-the-loop Prinzip von iObserve. Als Datengrundlage nutzen wir das Palladio Component Model. In dieser Arbeit beschreiben wir detailliert die Konzepte, weisen auf Implementierungsdetails hin und evaluieren iObserve nach Präzision und Skalierbarkeit
Ultrafast optical ranging using microresonator soliton frequency combs
Light detection and ranging (LIDAR) is critical to many fields in science and
industry. Over the last decade, optical frequency combs were shown to offer
unique advantages in optical ranging, in particular when it comes to fast
distance acquisition with high accuracy. However, current comb-based concepts
are not suited for emerging high-volume applications such as drone navigation
or autonomous driving. These applications critically rely on LIDAR systems that
are not only accurate and fast, but also compact, robust, and amenable to
cost-efficient mass-production. Here we show that integrated dissipative
Kerr-soliton (DKS) comb sources provide a route to chip-scale LIDAR systems
that combine sub-wavelength accuracy and unprecedented acquisition speed with
the opportunity to exploit advanced photonic integration concepts for
wafer-scale mass production. In our experiments, we use a pair of free-running
DKS combs, each providing more than 100 carriers for massively parallel
synthetic-wavelength interferometry. We demonstrate dual-comb distance
measurements with record-low Allan deviations down to 12 nm at averaging times
of 14 s as well as ultrafast ranging at unprecedented measurement rates of
up to 100 MHz. We prove the viability of our technique by sampling the
naturally scattering surface of air-gun projectiles flying at 150 m/s (Mach
0.47). Combining integrated dual-comb LIDAR engines with chip-scale
nanophotonic phased arrays, the approach could allow widespread use of compact
ultrafast ranging systems in emerging mass applications.Comment: 9 pages, 3 figures, Supplementary information is attached in
'Ancillary files
Coherent terabit communications with microresonator Kerr frequency combs
Optical frequency combs enable coherent data transmission on hundreds of
wavelength channels and have the potential to revolutionize terabit
communications. Generation of Kerr combs in nonlinear integrated microcavities
represents a particularly promising option enabling line spacings of tens of
GHz, compliant with wavelength-division multiplexing (WDM) grids. However, Kerr
combs may exhibit strong phase noise and multiplet spectral lines, and this has
made high-speed data transmission impossible up to now. Recent work has shown
that systematic adjustment of pump conditions enables low phase-noise Kerr
combs with singlet spectral lines. Here we demonstrate that Kerr combs are
suited for coherent data transmission with advanced modulation formats that
pose stringent requirements on the spectral purity of the optical source. In a
first experiment, we encode a data stream of 392 Gbit/s on subsequent lines of
a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature
amplitude modulation (16QAM). A second experiment shows feedback-stabilization
of a Kerr comb and transmission of a 1.44 Tbit/s data stream over a distance of
up to 300 km. The results demonstrate that Kerr combs can meet the highly
demanding requirements of multi-terabit/s coherent communications and thus
offer a solution towards chip-scale terabit/s transceivers
Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source
Terabit/s super-channels are likely to become the standard for next-generation optical networks and optical interconnects. A particularly promising approach exploits optical frequency combs for super-channel generation. We show that injection locking of a gain-switched laser diode can be used to generate frequency combs that are particularly well suited for terabit/s super-channel transmission. This approach stands out due to its extraordinary stability and flexibility in tuning both center wavelength and line spacing. We perform a series of transmission experiments using different comb line spacings and modulation formats. Using 9 comb lines and 16QAM signaling, an aggregate line rate (net data rate) of 1.296 Tbit/s (1.109 Tbit/s) is achieved for transmission over 150 km of standard single mode fiber (SSMF) using a spectral bandwidth of 166.5 GHz, which corresponds to a (net) spectral efficiency of 7.8 bit/s/Hz (6.7 bit/s/Hz). The line rate (net data rate) can be boosted to 2.112 Tbit/s (1.867 Tbit/s) for transmission over 300 km of SSMF by using a bandwidth of 300 GHz and QPSK modulation on the weaker carriers. For the reported net data rates and spectral efficiencies, we assume a variable overhead of either 7\% or 20\% for forward- error correction depending on the individual sub-channel quality after fiber transmission