75 research outputs found
Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration
Underwater images are subject to intricate and diverse degradation,
inevitably affecting the effectiveness of underwater visual tasks. However,
most approaches primarily operate in the raw pixel space of images, which
limits the exploration of the frequency characteristics of underwater images,
leading to an inadequate utilization of deep models' representational
capabilities in producing high-quality images. In this paper, we introduce a
novel Underwater Image Enhancement (UIE) framework, named WF-Diff, designed to
fully leverage the characteristics of frequency domain information and
diffusion models. WF-Diff consists of two detachable networks: Wavelet-based
Fourier information interaction network (WFI2-net) and Frequency Residual
Diffusion Adjustment Module (FRDAM). With our full exploration of the frequency
domain information, WFI2-net aims to achieve preliminary enhancement of
frequency information in the wavelet space. Our proposed FRDAM can further
refine the high- and low-frequency information of the initial enhanced images,
which can be viewed as a plug-and-play universal module to adjust the detail of
the underwater images. With the above techniques, our algorithm can show SOTA
performance on real-world underwater image datasets, and achieves competitive
performance in visual quality
Toward Sufficient Spatial-Frequency Interaction for Gradient-aware Underwater Image Enhancement
Underwater images suffer from complex and diverse degradation, which
inevitably affects the performance of underwater visual tasks. However, most
existing learning-based Underwater image enhancement (UIE) methods mainly
restore such degradations in the spatial domain, and rarely pay attention to
the fourier frequency information. In this paper, we develop a novel UIE
framework based on spatial-frequency interaction and gradient maps, namely
SFGNet, which consists of two stages. Specifically, in the first stage, we
propose a dense spatial-frequency fusion network (DSFFNet), mainly including
our designed dense fourier fusion block and dense spatial fusion block,
achieving sufficient spatial-frequency interaction by cross connections between
these two blocks. In the second stage, we propose a gradient-aware corrector
(GAC) to further enhance perceptual details and geometric structures of images
by gradient map. Experimental results on two real-world underwater image
datasets show that our approach can successfully enhance underwater images, and
achieves competitive performance in visual quality improvement
Decomposition of Microbial Necromass Is Divergent at the Individual Taxonomic Level in Soil
The turnover of microbial biomass plays an important part in providing a significant source of carbon (C) to soil organic C. However, whether the decomposition of microbial necromass (non-living microbial biomass) in the soil varies at the individual taxa level remains largely unknown. To fill up these gaps, we compared the necromass decomposition of bacterial and archaeal taxa by separating live microbial biomass with 18O-stable isotope probing from dead microbial biomass in soil. Our results showed that most of the microbial necromass at the operational taxonomic unit level (88.51%), which mainly belong to Acidobacteria, Actinobacteria, Gemmatimonadetes, and Proteobacteria, decomposed significantly after 30 days. In addition, there were great variations in necromass decomposition within each phylum, such as the decomposition of operational taxonomic units in Proteobacteria that ranged from 51% (Beijerinckia) to 92% (Nitrosospira). More importantly, the necromass decomposition was not related to the chemical composition of the cell wall but might positively correlate with the guanine–cytosine content of DNA and negatively correlated with genome size. This study provided a new insight that the decomposition of microbial necromass in soil was divergent at the individual taxonomic level and could not be fully explained by previously proposed mechanisms
GaN LEDs with in situ synthesized transparent graphene heat-spreading electrodes fabricated by PECVD and penetration etching
Currently, applying graphene on GaN based electronic devices requires the troublesome, manual, lengthy, and irreproducible graphene transfer procedures, making it infeasible for real applications. Here, a semiconductor industry compatible technique for the in situ growth of patterned graphene directly onto GaN LED epiwafers for transparent heat-spreading electrode application is introduced. Pre-patterned sacrificial Co acts as both an etching mask for the GaN mesa and a catalyst for graphene growth. The Co helps in catalyzing the hydrocarbon decomposition and the subsequent graphitization, and is removed by wet etching afterwards. The use of plasma enhancement in the graphene chemical vapor deposition reduces the growth temperature to as low as 600 °C and improves the graphene quality, where highly crystalline graphene can be obtained in just 2 min of deposition. This method reduces the exposure of the GaN epilayers to high temperature to its limit, avoiding the well-known GaN decomposition and In segregation problems. Importantly, it can directly pattern the graphene without using additional lithographic steps and in doing so avoids any unintentional deleterious doping and damage of graphene from contact with the photoresist. The approach simplifies the fabrication and enables mass production by eliminating the bottlenecks of graphene transfer and patterning procedures. By comparing the GaN LEDs with and without graphene, we find that graphene greatly improves the device optical, electrical and thermal performances, due to the high optical transparency (91.74%) and high heat spreading capability of the graphene electrode. Unlike transferred graphene, this method is intrinsically scalable, reproducible, and compatible with the planar process, and is beneficial to the industrialization of GaN-graphene optoelectronic devices, where the integrated graphene serves as a superior sustainable and functional substitute to other transparent conducting materials such as ITO.<br/
Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst
Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts
Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat
Salicylic acid (SA) can induce plant resistance to biotic and abiotic stresses through cross talk with other signaling molecules, whereas the interaction between hydrogen peroxide (H2O2) and abscisic acid (ABA) in response to SA signal is far from clear. Here, we focused on the roles and interactions of H2O2 and ABA in SA-induced freezing tolerance in wheat plants. Exogenous SA pretreatment significantly induced freezing tolerance of wheat via maintaining relatively higher dark-adapted maximum photosystem II quantum yield, electron transport rates, less cell membrane damage. Exogenous SA induced the accumulation of endogenous H2O2 and ABA. Endogenous H2O2 accumulation in the apoplast was triggered by both cell wall peroxidase and membrane-linked NADPH oxidase. The pharmacological study indicated that pretreatment with dimethylthiourea (H2O2 scavenger) completely abolished SA-induced freezing tolerance and ABA synthesis, while pretreatment with fluridone (ABA biosynthesis inhibitor) reduced H2O2 accumulation by inhibiting NADPH oxidase encoding genes expression and partially counteracted SA-induced freezing tolerance. These findings demonstrate that endogenous H2O2 and ABA signaling may form a positive feedback loop to mediate SA-induced freezing tolerance in wheat
Fluorescence quenching-based immunological probe for ticagrelor monitoring
Introduction: Ticagrelor is extensively utilized for the treatment of acute coronary syndromes (ACS), but its platelet aggregation inhibitory effects can potentially result in tissue bleeding, posing a serious risk to patients’ lives.Methods: In this study, we developed highly sensitive full length anti-ticagrelor Quenchbodies (Q-bodies) for fast monitoring of ticagrelor both in solution and serum for the first time. Ticagrelor coupled with N- hydroxysuccinimide (Ticagrelor-NHS) ester was also designed and synthesized for interaction and biological activity detection.Results: Both ATTO-labeled MEDI2452 (2452A) Q-body and TAMRA-labeled IgG 152 (152T) Q-body demonstrated efficient detection of ticagrelor and its active metabolite (TAM). The 2452A Q-body exhibited a broader detection range, while the 152T Q-body displayed a lower limit of detection (LOD). Under physiological conditions (Ticagrelor:TAM, 3:1), the concentration of ticagrelor was further measured, yielding LOD values of 4.65 pg/mL and 2.75 pg/mL for the two Q-bodies, with half-maximal effect concentrations of 8.15 ng/mL and 3.0 ng/mL, respectively.Discussion: Compared with traditional liquid chromatography-mass spectrometry (LC-MS) methods, anti-ticagrelor Q-bodies have higher sensitivity and detection speed. It enabled the completion of analysis within 3 min, facilitating rapid preoperative detection of blood drug concentration in ACS to determine the feasibility of surgery and mitigate the risk of intraoperative and postoperative hemorrhage. The swift detection of ticagrelor holds promise for enhancing individualized drug administration, preventing adverse reactions, and providing preoperative guidance
Inter-diffusion of Plasmonic Metals and Phase Change Materials
This work investigates the problematic diffusion of metal atoms into phase
change chalcogenides, which can destroy resonances in photonic devices.
Interfaces between Ge2Sb2Te5 and metal layers were studied using X-ray
reflectivity (XRR) and reflectometry of metal-Ge2Sb2Te5 layered stacks. The
diffusion of metal atoms influences the crystallisation temperature and optical
properties of phase change materials. When Au, Ag, Al, W structures are
directly deposited on Ge2Sb2Te5 inter-diffusion occurs. Indeed, Au forms AuTe2
layers at the interface. Diffusion barrier layers, such as Si3N4 or stable
diffusionless plasmonic materials, such as TiN, can prevent the interfacial
damage. This work shows that the interfacial diffusion must be considered when
designing phase change material tuned photonic devices, and that TiN is the
most suitable plasmonic material to interface directly with Ge2Sb2Te5.Comment: 23 pages, 8 figures, articl
- …