61 research outputs found

    Solar Light Activated Periodate for Degradation and Detoxification of 2 Highly Toxic 6PPD-Quinone at Environmental Levels

    Get PDF
    Degradation and detoxication of highly toxic 6PPD-quinone remain great challenges due to its stable structure. Herein, we establish a solar-light-driven IO4- activation system for efficient degradation of 6PPD-quinone at environmental concentration levels (10–100 μg L-1), with residual concentration below 5.7 ng L-1 (detection limit) within 30 min. IO3• was determined as the primary reactive species after IO4- activation for cleavage of the highly toxic quinone structure. Single electron transfer (SET) is the most favorable route for IO3• attacking, in which single electrons achieve self-driven transfer from 6PPD-quinone to IO3• due to the maintenance of spatial inversion symmetry generated by dipole moments. Femtosecond transient absorption spectra (fs-TAS) confirmed the formation of 6PPD-quinone cationic radical (6PPD-quinone•+), which was the key reaction intermediate. This study proposes a promising technology for degradation and detoxification of high-toxic 6PPD-quinone in water, and brings deep insight into the reaction mechanism within IO4- activation systems

    Nano-Porous Light-Emitting Silicon Chip as a Potential Biosensor Platform

    Get PDF
    Nano-porous silicon (PS) offers a potential platform for biosensors with benefits both in terms of light emission and the large functional surface area. A light emitting PS chip with a stable and functional surface was fabricated in our laboratory. When protein was deposited on it, the light emission was reduced in proportion to the protein concentration. Based on this property, we developed a rudimentary demonstration of a label-free sensor to detect bovine serum albumin (BSA). A serial concentration of BSA was applied to the light chip and the reduction in light emission was measured. The reduction of the light intensity was linearly related to the concentration of the BSA at concentrations below 10-5 M. The detection limit was 8×10-9 M

    Efficiency of electrochemical chloride removal from concrete at different environmental temperatures

    Get PDF
    Electrochemical chloride removal (ECR) is an effective and curative method to treat existed reinforced concrete structures about to suffer or already suffering from chloride attack, however, its application is still limited due to its side effect and efficiency, including the velocity and maximum capacity of chloride removal. This paper presents a temperature related numerical transport model to study the effect of temperature on efficiency of electrochemical chloride removal from concrete. Based on Fick’s law and Nernst-Planck equation with Gauss’ Law, temperature effect, chloride binding, multi-species coupling, electrochemical reactions were taken into account in this model. Temperature effect was considered on diffusion coefficient, chloride binding, ions migration capacity as well as electrolyte concentration. The model was validated by the comparison between the calculated results and experimental data. The results indicate that temperature dose have a considerable influence on electrochemical chloride removal and controlling temperature during treatment is a practical method to improve the electrochemical chloride removal when applied current density is not amplified

    Identification of the Signature Associated With m6A RNA Methylation Regulators and m6A-Related Genes and Construction of the Risk Score for Prognostication in Early-Stage Lung Adenocarcinoma

    Get PDF
    BackgroundN6-methyladenosine (m6A) RNA modification is vital for cancers because methylation can alter gene expression and even affect some functional modification. Our study aimed to analyze m6A RNA methylation regulators and m6A-related genes to understand the prognosis of early lung adenocarcinoma.MethodsThe relevant datasets were utilized to analyze 21 m6A RNA methylation regulators and 5,486 m6A-related genes in m6Avar. Univariate Cox regression analysis, random survival forest analysis, Kaplan–Meier analysis, Chi-square analysis, and multivariate cox analysis were carried out on the datasets, and a risk prognostic model based on three feature genes was constructed.ResultsRespectively, we treated GSE31210 (n = 226) as the training set, GSE50081 (n = 128) and TCGA data (n = 400) as the test set. By performing univariable cox regression analysis and random survival forest algorithm in the training group, 218 genes were significant and three prognosis-related genes (ZCRB1, ADH1C, and YTHDC2) were screened out, which could divide LUAD patients into low and high-risk group (P < 0.0001). The predictive efficacy of the model was confirmed in the test group GSE50081 (P = 0.0018) and the TCGA datasets (P = 0.014). Multivariable cox manifested that the three-gene signature was an independent risk factor in LUAD. Furthermore, genes in the signature were also externally validated using the online database. Moreover, YTHDC2 was the important gene in the risk score model and played a vital role in readers of m6A methylation.ConclusionThe findings of this study suggested that associated with m6A RNA methylation regulators and m6A-related genes, the three-gene signature was a reliable prognostic indicator for LUAD patients, indicating a clinical application prospect to serve as a potential therapeutic target

    A liquid progressive multifocal lens adjusted by the deformation of a non-uniform elastic membrane due to the variation of liquid pressure

    No full text
    Abstract Background In this paper, a liquid progressive multifocal lens with solid-liquid structure is demonstrated, which mainly consists of two elastic polydimethylsiloxane (PDMS) membranes, a solid substrate and liquid. Methods To realize the adjustment of the focuses progressively, the thickness of one of the membrane is designed non-uniform. By controlling the liquid pressure working on the membranes, the curvature of the membrane can be changed continuously and the power of the lens can be altered simultaneously. In this paper, the structure and a fabrication method of the lens is introduced, and a power distribution model is built for the calculation of the power distribution characteristics. Moreover, the deformation of the non-uniform elastic membrane of the lens under different pressures is analysed with finite element method (FEM). Results Finally, a prototype of the lens is developed and tested by applying a micro laser displacement sensor, and it is demonstrated that the progressive multifocal lens is feasible. Conclusion A novel liquid progressive multifocal lens with a non-uniform thickness elastic membrane is proposed. From the simulation and experimental investigation, it can be concluded that the proposed liquid lens can realize progressive multifocal through using non-uniform elastic membrane and the power can be adjusted by the pressure which is controlled by the liquid volume filled in the lens

    A liquid progressive multifocal lens adjusted by the deformation of a non-uniform elastic membrane due to the variation of liquid pressure

    No full text
    Background: In this paper, a liquid progressive multifocal lens with solid-liquid structure is demonstrated, which mainly consists of two elastic polydimethylsiloxane (PDMS) membranes, a solid substrate and liquid. Methods: To realize the adjustment of the focuses progressively, the thickness of one of the membrane is designed non-uniform. By controlling the liquid pressure working on the membranes, the curvature of the membrane can be changed continuously and the power of the lens can be altered simultaneously. In this paper, the structure and a fabrication method of the lens is introduced, and a power distribution model is built for the calculation of the power distribution characteristics. Moreover, the deformation of the non-uniform elastic membrane of the lens under different pressures is analysed with finite element method (FEM). Results: Finally, a prototype of the lens is developed and tested by applying a micro laser displacement sensor, and it is demonstrated that the progressive multifocal lens is feasible. Conclusion: A novel liquid progressive multifocal lens with a non-uniform thickness elastic membrane is proposed. From the simulation and experimental investigation, it can be concluded that the proposed liquid lens can realize progressive multifocal through using non-uniform elastic membrane and the power can be adjusted by the pressure which is controlled by the liquid volume filled in the lens

    Unsymmetrical α-diiminonickel bromide complexes: Synthesis, characterization and their catalytic behavior toward ethylene

    No full text
    A series of unsymmetrical α-diimine compounds L1-L5 bearing the dibenzhydryl substituent (-CH(Ph)2) has been prepared and characterized by IR and NMR (1H/13C) spectroscopy as well as by elemental analysis. Their corresponding nickel dibromide complexes (Ni1-Ni5) were synthesized and characterized, and single crystal X-ray diffraction studies on Ni4 and Ni5 were conducted. Upon activation with either MAO or MMAO, all nickel complexes exhibited high activity toward ethylene polymerization producing polyethylene of high molecular weight and with a high degree of branching. The polyethylene obtained using MAO possessed bimodal characteristics, whereas that resulting from the use of MMAO exhibited unimodal characteristics. Such observations indicate that the behavior of the active species can be readily controlled via the use of different co-catalysts. © 2013 The Royal Society of Chemistry

    Research on Modeling and Hierarchical Scheduling of a Generalized Multi-Source Energy Storage System in an Integrated Energy Distribution System

    No full text
    Energy storage systems play a crucial role in ensuring stable operation. However, the development of system-level energy storage is hindered due to the restrictions of economy, geography, and other factors. Transitions of traditional power systems into integrated energy distribution systems (IEDS) have provided new solutions to the problems mentioned above. Through intelligent control management methods, the utilization of multi-energy-type resources both on the supply and demand sides shows the potential for equivalent storage characteristics. Inspired by the aggregation principles, this paper aims at proposing a novel model named generalized multi-source energy storage (GMSES), including the modeling and cooperation of three kinds of available resources: conventional energy storage (CES), multi-energy flow resources (MFR), and demand response resources (DRR). Compared with the conventional means of storage, GMSES can be regarded as a more cost-effective and flexible participant in the proposed hierarchical energy scheduling framework that can realize system-level storage services in IEDS. On this basis, a multi-timescale energy scheduling strategy is proposed to reshape the regulation of IEDS operations and deal with the fluctuations caused by renewable energy and loads, where the general parameter serialization (GPS)-based control strategy is utilized to select and control the responsive loads in DRR. Furthermore, a hierarchical scheduling algorithm is developed to generate the optimal set-points of GMSES. Case studies are analyzed in an electricity-gas coupled IEDS. The simulation results show that the coupled co-optimization GMSES model is conducive to achieving the goal of self-management and economical operation, while the influence of the underlying IEDS on the upper energy system is reduced, as the tie-line power fluctuations are smoothed out
    • …
    corecore