659 research outputs found

    Efficient spin transport through native oxides of nickel and permalloy with platinum and gold overlayers

    Get PDF
    We present measurements of spin pumping detected by the inverse spin Hall effect voltage and ferromagnetic resonance spectroscopy in a series of metallic ferromagnet/normal metal thin film stacks. We compare heterostructures grown in situ to those where either a magnetic or nonmagnetic oxide is introduced between the two metals. The heterostructures, either nickel with a platinum overlayer (Ni/Pt) or the nickel-iron alloy permalloy (Py) with a gold overlayer (Py/Au), were also characterized in detail using grazing-incidence x-ray reflectivity, Auger electron spectroscopy, and both SQUID and alternating-gradient magnetometry. We verify the presence of oxide layers, characterize layer thickness, composition, and roughness, and probe saturation magnetization, coercivity, and anisotropy. The results show that while the presence of a nonmagnetic oxide at the interface suppresses spin transport from the ferromagnet to the nonmagnetic metal, a thin magnetic oxide (here the native oxide formed on both Py and Ni) somewhat enhances the product of the spin-mixing conductance and the spin Hall angle. We also observe clear evidence of an out-of-plane component of magnetic anisotropy in Ni/Pt samples that is enhanced in the presence of the native oxide, resulting in perpendicular exchange bias. Finally, the dc inverse spin Hall voltages generated at ferromagnetic resonance in our Py/Au samples are large, and suggest values for the spin Hall angle in gold of 0.04<αSH<0.22, in line with the highest values reported for Au. This is interpreted as resulting from Fe impurities. We present indirect evidence that the Au films described here indeed have significant impurity levels.B.L.Z. and D.B. gratefully acknowledge support from the NSF (Grants No. DMR-0847796 and No. DMR-1410247). B.L.Z. also thanks the University of Minnesota Chemical Engineering and Materials Science Department, as a portion of this work benefited from support of the George T. Piercy Distinguished Visiting Professorship. Work at the University of Minnesota was supported primarily by the NSF under Grant No. DMR-1507048, with additional support from the NSF MRSEC under Grant No. DMR-1420013. The work at WMI is supported by Deutsche Forschungsgemeinschaft via SPP 1538 Spin-Caloric Transport (Project No. GO 944/4-1). Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000)

    A novel SNP analysis method to detect copy number alterations with an unbiased reference signal directly from tumor samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples.</p> <p>Methods</p> <p>To address these limitations, we designed a novel "Virtual Normal" algorithm (VN), which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set.</p> <p>Results</p> <p>The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions.</p> <p>Conclusions</p> <p>We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.</p

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic

    Re-imagining the future:repetition decreases hippocampal involvement in future simulation

    Get PDF
    Imagining or simulating future events has been shown to activate the anterior right hippocampus (RHC) more than remembering past events does. One fundamental difference between simulation and memory is that imagining future scenarios requires a more extensive constructive process than remembering past experiences does. Indeed, studies in which this constructive element is reduced or eliminated by “pre-imagining” events in a prior session do not report differential RHC activity during simulation. In this fMRI study, we examined the effects of repeatedly simulating an event on neural activity. During scanning, participants imagined 60 future events; each event was simulated three times. Activation in the RHC showed a significant linear decrease across repetitions, as did other neural regions typically associated with simulation. Importantly, such decreases in activation could not be explained by non-specific linear time-dependent effects, with no reductions in activity evident for the control task across similar time intervals. Moreover, the anterior RHC exhibited significant functional connectivity with the whole-brain network during the first, but not second and third simulations of future events. There was also evidence of a linear increase in activity across repetitions in right ventral precuneus, right posterior cingulate and left anterior prefrontal cortex, which may reflect source recognition and retrieval of internally generated contextual details. Overall, our findings demonstrate that repeatedly imagining future events has a decremental effect on activation of the hippocampus and many other regions engaged by the initial construction of the simulation, possibly reflecting the decreasing novelty of simulations across repetitions, and therefore is an important consideration in the design of future studies examining simulation

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Histological analysis of surgical lumbar intervertebral disc tissue provides evidence for an association between disc degeneration and increased body mass index

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although histopathological grading systems for disc degeneration are frequently used in research, they are not yet integrated into daily care routine pathology of surgical samples. Therefore, data on histopathological changes in surgically excised disc material and their correlation to clinical parameters such as age, gender or body mass index (BMI) is limited to date. The current study was designed to correlate major physico-clinical parameters from a population of orthopaedic spine center patients (gender, age and BMI) with a quantitative histologic degeneration score (HDS).</p> <p>Methods</p> <p>Excised lumbar disc material from 854 patients (529 men/325 women/mean age 56 (15-96) yrs.) was graded based on a previously validated histologic degeneration score (HDS) in a cohort of surgical disc samples that had been obtained for the treatment of either disc herniation or discogenic back pain. Cases with obvious inflammation, tumor formation or congenital disc pathology were excluded. The degree of histological changes was correlated with sex, age and BMI.</p> <p>Results</p> <p>The HDS (0-15 points) showed significantly higher values in the nucleus pulposus (NP) than in the annulus fibrosus (AF) (Mean: NP 11.45/AF 7.87), with a significantly higher frequency of histomorphological alterations in men in comparison to women. Furthermore, the HDS revealed a positive significant correlation between the BMI and the extent of histological changes. No statistical age relation of the degenerative lesions was seen.</p> <p>Conclusions</p> <p>This study demonstrated that histological disc alterations in surgical specimens can be graded in a reliable manner based on a quantitative histologic degeneration score (HDS). Increased BMI was identified as a positive risk factor for the development of symptomatic, clinically significant disc degeneration.</p

    Thrombomodulin expression in colorectal carcinoma is protective and correlates with survival

    Get PDF
    Thrombomodulin (TM) is an endothelial receptor that exhibits anticoagulant, antifibrinolytic and anti-inflammatory activity by inhibiting thrombin and cellular adhesion. In this study, the expression and significance of TM was examined in primary colorectal cancer and its prognostic implications explored. TM immunostaining was performed on formalin-fixed, paraffin-embedded tissue sections, from primary lesions of 200 patients with colorectal carcinoma. Institutional Ethical approval was granted and clinical data retrieved from patients' records. All normal colonic tissue expressed TM on endothelial cells. TM tumour cell expression was demonstrated in 53 (26.5%) cases and 147 (73.5%) showed no neoplastic cell staining. On univariate and multivariate analysis TM expression on tumour cells correlated significantly with tumour stage, differentiation, Jass score and 5 year survival. TM expression decreases as overall stage and tumour size increase (P=0.03). In all, 91% TM positive tumours were well differentiated and 85% of TM negative tumours were poorly differentiated (P<0.01). Five year survival rates of patients with positive and negative TM expression were 71 and 41%, respectively. Survival rate was poorer in those patients who were TM negative compared with those who were positive (P<0.01). A total of 101 (50.5%) of the cases were node negative. In this group, 5 year survival rates of patients with positive and negative TM expression were 87.5 and 37.8%, respectively, demonstrating a poorer survival rate for those who are node negative and TM negative at the time of surgery (P<0.001). This study demonstrates that loss of TM is a key indicator in tumour biology and prognosis

    The impact of nonlinear exposure-risk relationships on seasonal time-series data: modelling Danish neonatal birth anthropometric data

    Get PDF
    Background Birth weight and length have seasonal fluctuations. Previous analyses of birth weight by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and a non-linear exposure-risk relationship. Methods Birth weight and birth lengths on over 1.5 million Danish singleton, live births were examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped exposure-risk relationships. We then added an extra layer of complexity by modelling weighted population-based exposure patterns. Results The Danish data showed clear seasonal fluctuations for both birth weight and birth length. A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time series with both 6 and 12 month periodicities. Changing the weightings of the population exposure risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing population exposure over time fitted the observed seasonal pattern in the Danish birth weight data. Conclusion In keeping with many other studies, Danish birth anthropometric data show complex and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk models may underlie these findings. Understanding the nature of seasonal fluctuations can help generate candidate exposures
    corecore