5,168 research outputs found
Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO interface
SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have
gained a significant importance in power electronics applications. However,
electrically active defects at the SiC/SiO interface degrade the ideal
behavior of the devices. The relevant microscopic defects can be identified by
electron paramagnetic resonance (EPR) or electrically detected magnetic
resonance (EDMR). This helps to decide which changes to the fabrication process
will likely lead to further increases of device performance and reliability.
EDMR measurements have shown very similar dominant hyperfine (HF) spectra in
differently processed MOSFETs although some discrepancies were observed in the
measured -factors. Here, the HF spectra measured of different SiC MOSFETs
are compared and it is argued that the same dominant defect is present in all
devices. A comparison of the data with simulated spectra of the C dangling bond
(P) center and the silicon vacancy (V) demonstrates
that the P center is a more suitable candidate to explain the
observed HF spectra.Comment: Accepted for publication in the Journal of Applied Physic
Cosmological Evolution of Supergiant Star-Forming Clouds
In an exploration of the birthplaces of globular clusters, we present a
careful examination of the formation of self-gravitating gas clouds within
assembling dark matter haloes in a hierarchical cosmological model. Our
high-resolution smoothed particle hydrodynamical simulations are designed to
determine whether or not hypothesized supergiant molecular clouds (SGMCs) form
and, if they do, to determine their physical properties and mass spectra. It
was suggested in earlier work that clouds with a median mass of several 10^8
M_sun are expected to assemble during the formation of a galaxy, and that
globular clusters form within these SGMCs. Our simulations show that clouds
with the predicted properties are indeed produced as smaller clouds collide and
agglomerate within the merging dark matter haloes of our cosmological model. We
find that the mass spectrum of these clouds obeys the same power-law form
observed for globular clusters, molecular clouds, and their internal clumps in
galaxies, and predicted for the supergiant clouds in which globular clusters
may form. We follow the evolution and physical properties of gas clouds within
small dark matter haloes up to z = 1, after which prolific star formation is
expected to occur. Finally, we discuss how our results may lead to more
physically motivated "rules" for star formation in cosmological simulations of
galaxy formation.Comment: Accepted to The Astrophysical Journal; 17 pages, 8 figure
Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions
The microscopic description of heavy-ion reactions at low beam energies is
achieved within hadronic transport approaches. In this article a new approach
SMASH (Simulating Many Accelerated Strongly-interacting Hadrons) is introduced
and applied to study the production of non-strange particles in heavy-ion
reactions at GeV. First, the model is described including
details about the collision criterion, the initial conditions and the resonance
formation and decays. To validate the approach, equilibrium properties such as
detailed balance are presented and the results are compared to experimental
data for elementary cross sections. Finally results for pion and proton
production in C+C and Au+Au collisions is confronted with HADES and FOPI data.
Predictions for particle production in collisions are made.Comment: 30 pages, 30 figures, replaced with published version; only minor
change
The Upper Asymptotic Giant Branch of the Elliptical Galaxy Maffei 1, and Comparisons with M32 and NGC 5128
Deep near-infrared images obtained with adaptive optics systems on the Gemini
North and Canada-France-Hawaii telescopes are used to investigate the bright
stellar content and central regions of the nearby elliptical galaxy Maffei 1.
Stars evolving on the upper asymptotic giant branch (AGB) are resolved in a
field 3 arcmin from the center of the galaxy. The locus of bright giants on the
(K, H-K) color-magnitude diagram is consistent with a population of stars like
those in Baade's Window reddened by E(H-K) = 0.28 +/- 0.05 mag. This
corresponds to A_V = 4.5 +/- 0.8 mag, and is consistent with previous estimates
of the line of sight extinction computed from the integrated properties of
Maffei 1. The AGB-tip occurs at K = 20.0, which correponds to M_K = -8.7;
hence, the AGB-tip brightness in Maffei 1 is comparable to that in M32, NGC
5128, and the bulges of M31 and the Milky-Way. The near-infrared luminosity
functions (LFs) of bright AGB stars in Maffei 1, M32, and NGC 5128 are also in
excellent agreement, both in terms of overall shape and the relative density of
infrared-bright stars with respect to the fainter stars that dominate the light
at visible and red wavelengths. It is concluded that the brightest AGB stars in
Maffei 1, NGC 5128, M32, and the bulge of M31 trace an old, metal-rich
population, rather than an intermediate age population. It is also demonstrated
that Maffei 1 contains a distinct red nucleus, and this is likely the optical
signature of low-level nuclear activity and/or a distinct central stellar
population. Finally, there is an absence of globular clusters brighter than the
peak of the globular cluster LF in the central 700 x 700 parsecs of Maffei 1.Comment: 22 pages of text and 9 postscript figures; to appear in the
Astronomical Journa
Pharmacokinetics, safety, and efficacy of a single co-administered dose of diethylcarbamazine, albendazole and ivermectin in adults with and without Wuchereria bancrofti infection in Cote d\u27Ivoire
BackgroundA single co-administered dose of ivermectin (IVM) plus diethylcarbamazine (DEC) plus albendazole (ALB), or triple-drug therapy, was recently found to be more effective for clearing microfilariae (Mf) than standard DEC plus ALB currently used for mass drug administration programs for lymphatic filariasis (LF) outside of sub-Saharan Africa. Triple-drug therapy has not been previously tested in LF-uninfected individuals from Africa. This study evaluated the pharmacokinetics (PK), safety, and efficacy of triple-drug therapy in people with and without Wuchereria bancrofti infection in West Africa.MethodsIn this open-label cohort study, treatment-naïve microfilaremic (>50 mf/mL, n = 32) and uninfected (circulating filarial antigen negative, n = 24) adults residing in Agboville district, Côte d’Ivoire, were treated with a single dose of IVM plus DEC plus ALB, and evaluated for adverse events (AEs) until 7 days post treatment. Drug levels were assessed by liquid chromatography and mass spectrometry. Persons responsible for assessing AEs were blinded to participants’ infection status.FindingsThere was no difference in AUC0-inf or Cmax between LF-infected and uninfected participants (P>0.05 for all comparisons). All subjects experienced mild AEs; 28% and 25% of infected and uninfected participants experienced grade 2 AEs, respectively. There were no severe or serious adverse events. Only fever (16 of 32 versus 4 of 24, PConclusionsModerate to heavy W. bancrofti infection did not affect PK parameters for IVM, DEC or ALB following a single co-administered dose of these drugs compared to uninfected individuals. The drugs were well tolerated. This study confirmed the efficacy of the triple-drug therapy for clearing W. bancrofti Mf and has added important information to support the use of this regimen in LF elimination programs in areas of Africa without co-endemic onchocerciasis or loiasis.Trial registrationClinicalTrials.gov NCT02845713.</div
Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States
Relatively low energy and very enhanced alpha-particle groups have been
observed in various actinide fractions produced via secondary reactions in a
CERN W target which had been irradiated with 24-GeV protons. In particular,
5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of
3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No
sources, respectively. The measured energies are a few MeV lower than the known
g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide
nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected
from the systematics of alpha-particle decay in this region of nuclei. The
deduced evaporation residue cross sections are in the mb region, about 4 orders
of magnitude higher than expected. A consistent interpretation of the data is
given in terms of production of long-lived isomeric states in the second and
third wells of the potential-energy surfaces of the parent nuclei, which decay
to the corresponding wells in the daughters. The possibility that the isomeric
states in the third minimum are actually the true or very near the true ground
states of the nuclei, and consequences regarding the production of the
long-lived superheavy elements, are discussed.Comment: 27 pages including 8 figures and 4 table
Simulations of galaxy formation in a Λ cold dark matter universe : I : dynamical and photometric properties of a simulated disk galaxy.
We present a detailed analysis of the dynamical and photometric properties of a disk galaxy simulated in the cold dark matter (CDM) cosmogony. The galaxy is assembled through a number of high-redshift mergers followed by a period of quiescent accretion after z1 that lead to the formation of two distinct dynamical components: a spheroid of mostly old stars and a rotationally supported disk of younger stars. The surface brightness profile is very well approximated by the superposition of an R1/4 spheroid and an exponential disk. Each photometric component contributes a similar fraction of the total luminosity of the system, although less than a quarter of the stars form after the last merger episode at z1. In the optical bands the surface brightness profile is remarkably similar to that of Sab galaxy UGC 615, but the simulated galaxy rotates significantly faster and has a declining rotation curve dominated by the spheroid near the center. The decline in circular velocity is at odds with observation and results from the high concentration of the dark matter and baryonic components, as well as from the relatively high mass-to-light ratio of the stars in the simulation. The simulated galaxy lies 1 mag off the I-band Tully-Fisher relation of late-type spirals but seems to be in reasonable agreement with Tully-Fisher data on S0 galaxies. In agreement with previous simulation work, the angular momentum of the luminous component is an order of magnitude lower than that of late-type spirals of similar rotation speed. This again reflects the dominance of the slowly rotating, dense spheroidal component, to which most discrepancies with observation may be traced. On its own, the disk component has properties rather similar to those of late-type spirals: its luminosity, its exponential scale length, and its colors are all comparable to those of galaxy disks of similar rotation speed. This suggests that a different form of feedback than adopted here is required to inhibit the efficient collapse and cooling of gas at high redshift that leads to the formation of the spheroid. Reconciling, without fine-tuning, the properties of disk galaxies with the early collapse and high merging rates characteristic of hierarchical scenarios such as CDM remains a challenging, yet so far elusive, proposition
Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential
Magneto-optical microscopy and magnetometry have been used to study
19 magnetization reversal in an ultrathin magnetically soft [Pt/Co]2 ferromagnetic film
20 coupled to an array of magnetically harder [Co/Pt]4 nanodots via a predominantly
21 dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially
22 periodic pinning potential for domain walls propagating through the continuous
23 magnetic film. When reversing the applied field with respect to the static nanodot
24 array magnetization orientation, strong asymmetries in the wall velocity and switching
25 fields are observed. Asymmetric switching fields mean that the hysteresis of the film is
26 characterized by a large bias field of dipolar origin which is linked to the wall velocity
27 asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields
28 where the domains become round and compact. A field-polarity-controlled transition
29 from dendritic to compact faceted domain structures is also seen at low field and a
30 model is proposed to interpret the transition
Thalamic white matter macrostructure and subnuclei volumes in Parkinson’s disease depression
Depression is a common non-motor feature of Parkinson’s disease (PD) which confers significant morbidity and is challenging to treat. The thalamus is a key component in the basal ganglia-thalamocortical network critical to the pathogenesis of PD and depression but the precise thalamic subnuclei involved in PD depression have not been identified. We performed structural and diffusion-weighted imaging (DWI) on 76 participants with PD to evaluate the relationship between PD depression and grey and white matter thalamic subnuclear changes. We used a thalamic segmentation method to divide the thalamus into its 50 constituent subnuclei (25 each hemisphere). Fixel-based analysis was used to calculate mean fibre cross-section (FC) for white matter tracts connected to each subnucleus. We assessed volume and FC at baseline and 14–20 months follow-up. A generalised linear mixed model was used to evaluate the relationship between depression, subnuclei volume and mean FC for each thalamic subnucleus. We found that depression scores in PD were associated with lower right pulvinar anterior (PuA) subnucleus volume. Antidepressant use was associated with higher right PuA volume suggesting a possible protective effect of treatment. After follow-up, depression scores were associated with reduced white matter tract macrostructure across almost all tracts connected to thalamic subnuclei. In conclusion, our work implicates the right PuA as a relevant neural structure in PD depression and future work should evaluate its potential as a therapeutic target for PD depression
- …