21 research outputs found
Beam Diffraction by a Planar Grid Structure at 93 GHz
The idea of using diode grids for electronic beam steering was introduced by Lam et al [l]. As shown in Figure 1, when an incident beam reflects off the diode grid, the direction of the reflected wave can be controlled by progressively varying the ref1ection phase across the grid. The reflection phase of the diode grid can be controlled by varying the DC bias
on the diodes. Later, a monolithic diode grid was fabricated with l600 varactor diodes, and a relative phase shift of 70° at 93 GHz was measured [2]. This work verified the transmission-line theory used to design the grid, but the phase shift was not sufficient to steer the beam, recently, Johansson [3] designed and built a passive planar grating reflector antenna that focused a beam. A rigorous moment-method solution was applied to choose a grating geometry to select the first-order diffracted wave. In this work, using
the transmission-line model approach, the goal was to demonstrate that the beam can be steered by building a grid structure without diodes to give a fixed beam shift. In these grids, diodes were replaced by gaps with different sizes to obtain different capacitances needed to steer a beam at 93 GHz. The result show a successful beam shift of 30° with a loss of 2.5 dB
A 100-MESFET planar grid oscillator
A 100-MESFET oscillator which gives 21 W of CW effective radiated power (ERP) with a 16-dB directivity and a 20% DC-to-RF conversion efficiency at 5 GHz is presented. The oscillator is a planar grid structure periodically loaded with transistors. The grid radiates and the devices combine quasi-optically and lock to each other. The oscillator can also be quasi-optically injection-locked to an external signal. The planar grid structure is very simple. All of the devices share the same bias, and they can be power and frequency tuned with a mirror behind the grid or dielectric slabs in front of it. An equivalent circuit for an infinite grid predicts the mirror frequency tuning. The planar property of the oscillator offers the possibility of a wafer-scale monolithically integrated source. Thousands of active solid-state devices can potentially be integrated in a high-power source for microwave or millimeter-wave applications
A waveguide embedded 250 GHz quasi-optical frequency-tripler array
A waveguide embedded 250 GHz HBV-varactor quasi-optical multiplier array is presented. The module utilizes a mechanically compact and simple shim system, combining the large array power handling capability with the convenience of waveguide interfaced circuits. At the same time this approach offers excellent power and frequency scalability. The current tripler prototype produces a non saturated output power of 8 mW at 248 GHz during initial measurements at medium pump power
A 100-Element MESFET Grid Oscillator
A planar grid oscillator which combines the outputs of 100 devices quasi-optically is presented. The planar configuration is attractive because it is compatible with present-day IC fabrication techniques. In addition, the grid's structure leads to a transmission-line model that can readily be applied to the design of larger grids in the future. This approach is particularly attractive for wafer-scale integration at millimeter wavelengths. The grid oscillates near 5 GHz and can be frequency tuned with mirror spacing from 4.8 GHz to 5.2 GHz. The far-field radiation patterns for the grid are shown. From the pattern, the directivity is calculated to be 16 dB. The ERP is measured to be 25 W. The DC input power is 3 W, and the power radiated from the grid is calculated to be 0.625 W. This gives a DC-to-RF efficiency of 20%
Failures in power-combining arrays
We derive a simple formula for the change in output when a device fails in a power-combining structure with identical matched devices. The loss is written in terms of the scattering coefficient of the failed device and reflection coefficient of an input port in the combining network. We apply this formula to several power combiners, including arrays in free space and enclosed waveguide structures. Our simulations indicate the output power degrades gracefully as devices fail, which is in agreement with previously published results
Bar-grid oscillators
Grid oscillators are an attractive way of obtaining high power levels from the solid-state devices, since potentially the output powers of thousands of individual devices can be combined. The active devices do not require an external locking signal, and the power combining is done in free space. Thirty-six transistors were mounted on parallel brass bars, which provide a stable bias and have a low thermal resistance. The output power degraded gradually when the devices failed. The grid gave an effective radiated power of 3 W at 3 GHz. The directivity was 11.3 dB, and the DC-to-RF efficiency was 22%. Modulation capabilities of the grid were demonstrated. An equivalent circuit model for the grid is derived, and comparison with experimental results is shown
A 100-element planar Schottky diode grid mixer
The authors present a Schottky diode grid mixer suitable for mixing or detecting quasi-optical signals. The mixer is a planar bow-tie grid structure periodically loaded with diodes. A simple transmission line model is used to predict the reflection coefficient of the grid to a normally incident plane wave. The grid mixer power handling and dynamic range scales as the number of devices in the grid. A 10-GHz 100-element grid mixer has shown an improvement in dynamic range of 16.3 to 19.8 dB over an equivalent single-diode mixer. The conversion loss and noise figure of the grid are equal to those of a conventional mixer. The quasi-optical coupling of the input signals makes the grid mixer suitable for millimeter-wave and submillimeter-wave applications by eliminating waveguide sidewall losses and machining difficulties. The planar property of the grid potentially allows thousands of devices to be integrated monolithically
Quasi-optical solid-state microwave sources
Quasi-optical power-combining offers the most promising method for extracting large amounts of power from solid-state devices in the microwave and millimeter-wave range. This technique can be applied to a variety of devices. The difficulties associated with traditional waveguides power-combiners such as skin-effect losses are eliminated because the signals are combined in free-space. The solid-state devices are embedded in a two-dimensional grid configuration and placed in a Fabry-Perot cavity. In this respect, the quasi-optical power-combiner is analogous to a laser oscillator in which the active medium of the laser is replaced with an array of active devices. The grid presents a reflection coefficient to an incident plane wave which is larger than unity and the resonator provides feedback to couple the devices together. The two-dimensional structure of the grid is amenable to modern photolithographic processing and potentially allows thousands of devices to be integrated monolithically